Параметрической надежности
Оценка показателей надежности локомотивного оборудования на основании результатов контроля структурных или диагностических параметров, характеризующих его техническое состояние в процессе эксплуатации, является важным условием для принятия оптимальных управляющих решений. Одним из важнейших в этом смысле показателей долговечности является ресурс ответственного оборудования локомотива.
В качестве структурных параметров ответственных узлов, как правило, выбирают монотонно и медленно изменяющиеся по величине параметры, характеризующие, например, процесс изменения технического состояния ответственного оборудования локомотивов в результате износа его трущихся частей. Важным требованием к структурным параметрам в этом случае является возможность задания для него некоторого численного значения, характеризующего предельное состояние узла.
Так как на процесс износа узла в процессе его эксплуатации оказывает влияние множество факторов, то измеренные значения контролируемого параметра, являются случайными величинами. Поэтому изменение технического состояния конкретного узла в этих условиях необходимо оценивать с привлечением статистических методов, например, выборочного метода оценки статистических характеристик распределения случайной величины.
Определение ресурса оборудования данным методом осуществляется в соответствии со следующими этапами.
На первом этапе формируется репрезентативная выборка объемом n однотипного оборудования, определяются вид закона распределения значений контролируемого параметра данного оборудования на момент окончания процесса приработки оборудования и статистические характеристики (параметры) этого закона.
На втором этапе определяются вид и параметры законов изменения статистических характеристик значений контролируемого параметра от наработки оборудования. Для этого после окончания процесса приработки, т.е. при установившемся процессе износа трущихся деталей, в течение некоторого периода эксплуатации набирается статистика изменения фактических значений контролируемого параметра от наработки. Обработкой этих данных специальными математическими методами достигаются цели второго этапа.
На третьем этапе привлекают имитационное моделирование для формирования процесса накопления повреждений (износа) для каждого элемента выборки вплоть до достижения контролируемым параметром предельного значения.
На четвертом этапе устанавливается вид и параметры закона распределения значений наработки, при которой данное оборудование достигает предельного состояния и по заданной величине вероятности этого события определяют искомую величину ресурса.
Третий этап (этап моделирования) в курсовом проекте выполняется по следующему алгоритму:
– по заданным значениям параметров нормального закона распределения b и d определяются значения контролируемого параметра для каждого из n узлов, входящих в выборку на момент окончания сбора фактических данных из следующего выражения:
x1i = b + d (Sgj – 6),
где gj - значения генератора случайных чисел от 0 до 1, при изменении j от 1 до 12, а i=1, 2, 3…n;
– по найденному таким образом первоначальному значению контролируемого параметра для всей выборки рассчитывается следующее значение через интервал наработки DlТО-3 по формуле:
x2i = x1i +[ mxi +sxi (Sgj – 6)],
где mxi и sxi определяются из соотношений:
mxi = aDlТО-3 + b;
sxi = cDlТО-3 + d;
– процесс расчета последующих значений контролируемого параметра продолжается до тех пор, пока все n значений контролируемого параметра не достигнут предельно допустимого значения;
– ресурс определяется по наработке, при которой вероятность достижения предельно допустимого значения контролируемым параметром равняется заданной величинеg.
Расчеты значений контролируемого параметра в соответствии этим алгоритмом производим на ПК.
1. Первые два этапа определения ресурса оборудования считаются выполненными, т.к. в качестве исходных данных уже заданы вид закона распределения (нормальный) и характеристики (b и d) значений контролируемого параметра сразу же после окончания приработки, вид (линейный) и параметры (a и c) законов изменения характеристик от наработки.
2. В соответствии с исходными данными варианта с помощью программы «DIAGN1» проводится моделирование процесса износа узла. В результате моделирования формируются массивы данных с прогнозными значениями контролируемого параметра, соответствующими состоянию узлов на очередных ТО–3 для каждого из узлов, входящих в контрольную выборку. Массивы формируются вплоть до номера ТО–3, при котором все узлы контрольной выборки достигнут предельного состояния.
3. Полученные в результате моделирования данные используем для построения теоретической интегральной кривой распределения наработки, при которой данный узел достигает предельного состояния. Для этого в результате анализа данных:
– выявляются смежные номера ТО–3 ( ), между которыми один или более узлов из контрольной выборки достигают предельного состояния, т.е. между ними значение контролируемого параметра превысило предельно допустимое значение;
– определяется значение наработки для каждого узла, при котором узел достигает предельного состояния. При этом закон изменения значения контролируемого параметра между этими ТО-3 считать линейным, а значение наработки рассчитывается по формуле:
,
где – пробег локомотива между ТО-3 (табл.3); – предельное значение контролируемого параметра; и – значения контролируемого параметра на ТО–3 до и после достижения узлом предельного состояния соответственно, выбираются из массива данных, полученных в результате моделирования;
Пример:
– по полученной статистике определяются средневыборочное и среднее квадратическое отклонение (стандартное отклонение) предельной наработки узла соответственно по следующим формулам:
,
.
4. Из уравнения плотности вероятности для нормального закона распределения случайной величины lпр регламентированной величины γ при назначении ресурса (величина γ принимается равной 0,1) находится искомое значение :
.
Для нахождения величины из данного уравнения воспользуемся программой Мiсrosoft Ехсеl.
По результатам расчетов =603,586 тыс. км.
Таблица № 5.
№ | Si | Si-1 | Ni-1 | liпр | lпр___ | lпр ск | (liпр-lпр___)^2 |
0,382835 | 0,345629 | 658,476 | 603,586 | 34,003 | 3012,891277 | ||
0,409449 | 0,359605 | 628,184 | 605,0267092 | ||||
0,383236 | 0,348748 | 598,123 | 29,84258472 | ||||
0,383135 | 0,367126 | 556,083 | 2256,514951 | ||||
0,39057 | 0,339387 | 595,870 | 59,5446742 | ||||
0,38665 | 0,343011 | 556,952 | 2174,727575 | ||||
0,391989 | 0,362433 | 591,887 | 136,8660647 | ||||
0,388173 | 0,323678 | 577,466 | 682,2910714 | ||||
0,400928 | 0,339192 | 653,220 | 2463,526148 | ||||
0,402356 | 0,356643 | 630,219 | 709,3024657 | ||||
0,385637 | 0,321429 | 558,244 | 2055,905842 | ||||
0,380957 | 0,315426 | 559,708 | 1925,306741 | ||||
0,380117 | 0,329232 | 559,954 | 1903,771319 | ||||
0,39687 | 0,366611 | 628,850 | 638,2371833 | ||||
0,401496 | 0,342449 | 592,719 | 118,096503 | ||||
0,385062 | 0,35 | 597,113 | 41,90877148 | ||||
0,3831 | 0,339162 | 558,589 | 2024,758914 | ||||
0,393258 | 0,371753 | 587,670 | 253,3317161 | ||||
0,388707 | 0,329972 | 677,035 | 5394,743258 | ||||
0,402692 | 0,335842 | 633,211 | 877,6304118 | ||||
0,383593 | 0,330694 | 618,642 | 226,662669 | ||||
0,38552 | 0,35229 | 576,678 | 724,069582 | ||||
0,400738 | 0,379318 | 600,637 | 8,699278221 | ||||
0,414467 | 0,352478 | 628,880 | 639,7559825 | ||||
0,392256 | 0,379117 | 621,344 | 315,341172 | ||||
0,381444 | 0,348797 | 639,115 | 1262,320063 | ||||
0,394473 | 0,373069 | 566,476 | 1377,14337 | ||||
0,387214 | 0,353986 | 595,658 | 62,85894044 | ||||
0,387704 | 0,352826 | 655,582 | 2703,591666 | ||||
0,397953 | 0,374011 | 605,003 | 2,006987319 | ||||
18107,59 | 34686,67389 |