Замедление поступления аминокислот в органы и ткани.
Всосавшиеся из кишечника аминокислоты поступают непосредственно в кровь и частично в лимфатическую систему, представляя собой запас разнообразных азотистых веществ, которые затем участвуют во всех видах обмена. В норме аминокислоты, всосавшиеся в кровь из кишечника, циркулируют в крови 5 — 10 мин и очень быстро поглощаются печенью и частично другими органами (почками, сердцем, мышцами). Увеличение времени этой циркуляции указывает на нарушение способности тканей и органов (в первую очередь печени) поглощать аминокислоты.
Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы. Повышенное содержание в крови тирозина способствует накоплению тирамина, который участвует в патогенезе злокачественной гипертонии. Длительное повышение содержания гистидина ведет к увеличению концентрации гистамина, что способствует нарушению кровообращения и проницаемости капилляров. Кроме того, повышение содержания аминокислот в крови проявляется увеличением их выведения с мочой и формированием особой формы нарушений обмена — аминоацидурии. Последняя может быть общей, связанной с повышением концентрации в крови нескольких аминокислот, или избирательной — при увеличении содержания в крови какой-либо одной аминокислоты.
Нарушение синтеза белков.
Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.
Среди причин, вызывающих нарушения синтеза белка, важное место занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, нарушение количественных соотношений между незаменимыми аминокислотами, поступающими в организм). Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотношениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соотношении (1:1:0,5), то синтез тканевого белка будет обеспечиваться при этом только наполовину. При отсутствии в клетках хотя бы одной из 20 незаменимых аминокислот прекращается синтез белка в целом.
Нарушение скорости синтеза белков может быть обусловлено расстройством функции соответствующих генетических структур, на которых происходит этот синтез (транскрипция ДНК, трансляция, репликация). Повреждение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующего излучения, ультрафиолетового облучения и др.). Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, ошибки в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и некоторых других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.
Одной из важных причин, вызывающих нарушение синтеза белков, может явиться нарушение регуляции этого процесса. Интенсивность и направленность белкового обмена регулируют нервная и эндокринная системы, действие которых заключается, вероятно, в их влиянии на различные ферментные системы. Клинический и экспериментальный опыт показывают, что отключение органов и тканей от ЦНС приводит к местному нарушению процессов обмена в денервированных тканях, а повреждение ЦНС вызывает расстройства белкового обмена. Удаление коры головного мозга у животных ведет к снижению синтеза белка.
Соматотропный гормон гипофиза, половые гормоны и инсулин оказывают стимулирующее воздействие на синтез белка. Наконец, причиной патологии синтеза белка может стать изменение активности ферментных систем клеток, участвующих в биосинтезе белка. В крайне выраженных случаях речь идет о блокировке метаболизма, представляющей собой вид молекулярных расстройств, составляющих основу некоторых наследственных заболеваний.
Результатом действия всех перечисленных факторов является обрыв или снижение скорости синтеза как отдельных белков, так и белка в целом.
Выделяют качественные и количественные нарушения биосинтеза белков. О том. какое значение могут иметь качественные изменения биосинтеза белков в патогенезе различных заболеваний, можно судить на примере некоторых видов анемий при появлении патологических гемоглобинов. Замена только одного аминокислотного остатка (глутамина) в молекуле гемоглобина на валин приводит к тяжелому заболеванию — серповидноклеточной анемии.
Особый интерес представляют количественные изменения в биосинтезе белков органов и крови, приводящие к сдвигу соотношений отдельных фракций белков в сыворотке крови — диспротеинемии. Выделяют две формы диспротеинемий: гиперпротеинемия (увеличение содержания всех или отдельных видов белков) и гипопротеинемия (уменьшение содержания всех или отдельных белков). Так, ряд заболеваний печени (цирроз, гепатит), почек (нефрит, нефроз) сопровождаются выраженным уменьшением содержания альбуминов. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению содержания γ-глобулинов.
Развитие диспротеинемии сопровождается, как правило, серьезными сдвигами в гомеостазе организма (нарушением онкотического давления, водного обмена). Значительное уменьшение синтеза белков, особенно альбуминов и γ-глобулинов, ведет к резкому снижению сопротивляемости организма к инфекции, снижению иммунологической устойчивости. Значение гипопротеинемии в форме гипоальбуминемии определяется еще и тем, что альбумин образует более или менее прочные комплексы с различными веществами, обеспечивая их транспорт между различными органами и перенос через клеточные мембраны при участии специфических рецепторов. Известно, что соли железа и меди (чрезвычайно токсичные для организма) при pH сыворотки крови трудно растворимы и транспорт их возможен только в виде комплексов со специфическими белками сыворотки (трансферрином и церулоплазмином), что предотвращает интоксикацию этими солями. Около половины кальция удерживается в крови в форме, связанной с альбуминами сыворотки. При этом в крови устанавливается определенное динамическое равновесие между связанной формой кальция и его ионизированными соединениями.
При всех заболеваниях, сопровождающихся снижением содержания альбуминов (заболевания почек) ослабляется и способность регулировать концентрацию ионизированного кальция в крови. Кроме того, альбумины являются носителями некоторых компонентов углеводного обмена (гликопротеиды) и основными переносчиками свободных (неэстерифицированных) жирных кислот, ряда гормонов.
При поражении печени и почек, некоторых острых и хронических воспалительных процессах (ревматизме, инфекционном миокардите, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственные норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы), нарушения свертывания крови при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37 °С, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.