Эквивалентные схемы биологических объектов.

При наложении внешней разности потенциалов в тканях возникает противоположно направленное электрическое поле, которое значительно уменьшает приложенное внешнее поле и обуславливает высокое удельное сопротивление постоянному току (порядка 106 – 107Ом∙см). При этом сначала возникают те виды поляризации, которые имеют меньшее время релаксации. Более полную информацию о биологическом объекте можно получить при измерении его электропроводности на переменном токе. Так как биологические системы способны накапливать электрические заряды при прохождении через них тока, то их электрические свойства недостаточно описывать только с помощью активного сопротивления Эквивалентные схемы биологических объектов. - student2.ru . Необходимо также учитывать наличие у тканей и реактивного (ёмкостного) сопротивления Эквивалентные схемы биологических объектов. - student2.ru , определяемого соотношением:

Эквивалентные схемы биологических объектов. - student2.ru (1)

где Эквивалентные схемы биологических объектов. - student2.ru – циклическая частота, Эквивалентные схемы биологических объектов. - student2.ru , Эквивалентные схемы биологических объектов. - student2.ru – линейная частота, Эквивалентные схемы биологических объектов. - student2.ru [Гц], Эквивалентные схемы биологических объектов. - student2.ru – период колебаний (с), Эквивалентные схемы биологических объектов. - student2.ru – ёмкость (Ф).

Суммарное сопротивление биологического объекта называется импедансом биологического объекта. Для последовательно соединенных Эквивалентные схемы биологических объектов. - student2.ru и Эквивалентные схемы биологических объектов. - student2.ru импеданс определяется по формуле:

Эквивалентные схемы биологических объектов. - student2.ru (2)

Известно, что активное омическое сопротивление R биологической ткани практически не зависит от частоты тока, а ёмкостное – значительно уменьшается по мере увеличения частоты, что приводит к увеличению проводимости всей емкостно-омической системы.

Импеданс тканей организма зависит от их кровенаполнения. На этом основан метод исследования функции кровообращения, называемый реографией. При этом в течение цикла сердечной деятельности регистрируются изменения импеданса определённого участка тканей, на границе которого накладываются электроды.

Из (2) следует, что импеданс изменяется с изменением частоты тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода Эквивалентные схемы биологических объектов. - student2.ru переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону Эквивалентные схемы биологических объектов. - student2.ru , больше времени релаксации τ какого-либо вида поляризации, то поляризация достигает своего наибольшего значения. И до тех пор, пока Эквивалентные схемы биологических объектов. - student2.ru , эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод Эквивалентные схемы биологических объектов. - student2.ru переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть своего максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость – возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость будут определяться другими видами поляризации с меньшим временем релаксации.

Наши рекомендации