Средства и методы радиационной разведки и контроля

Обеспечение радиационной безопасности в зонах радиоактивного заражения местности достигается непрерывным ведением радиационного наблюдения и разведки, контролем доз облучения личного состава, а также проведением радиометрического контроля в зоне заражения и по выходу из зараженных районов.

Для обнаружения и измерения ионизирующих излучений используются дозиметрические приборы, которые подразделяются на измерители мощности дозы (индикаторы радиоактивности, рентгенометры, радиометры) и измерители дозы (дозиметры). Методы измерения ионизирующих излучений в этих приборах основаны на различных физико-химических принципах.

В основе ионизационного метода лежит явление ионизации газа в камере при взаимодействии излучения с веществом. Для измерения используются явления электропроводности ионизированного газа. В результате возникает ток между вмонтированными в камеру электродами, к которым подведено напряжение. В зависимости от режима работы приборы, основанные на появлении ионизационного тока в газах, могут использоваться для измерения плотности потоков частиц (пропорциональные счетчики, счетчики Гейгера-Мюллера) и для измерения мощности дозы и дозы излучения (ионизационные камеры).

Химические методы дозиметрии основаны на измерении выхода радиационно-химических реакций, возникающих под действием ионизирующих излучений. Так, при действии излучений на воду образуются свободные радикалы Н* и ОН*. Продукты радиолиза воды могут взаимодействовать с растворенными в ней веществами, вызывая различные окислительно-восстановительные реакции, сопровождающиеся изменением цвета индикатора (например, реактива Грисса для нитратного метода.

Химические методы дозиметрии не обязательно связаны с водными растворами; для этих целей применяются также органические растворы, изменяющие цвет пленки или стекла. Химические методы используются, как правило, для измерения дозы излучения.

Одним из вариантов химического метода является фотографический метод.В его основе лежит восстановление атомов металлического серебра из галоидной соли под влиянием излучений. Плотность почернения фотопленки после проявления зависит от дозы излучения. Данный метод часто используется в приборах контроля профессионального облучения.

Сцинтилляционные методы основаны на регистрации вспышек света, возникающих при взаимодействии излучения с некоторыми органическими и неорганическими веществами (антрацен, стильбен, сернистый цинк и др.). Эти методы используют в приборах, предназначенных для измерения потоков фотонов и частиц.

Сущность люминесцентных методов состоит в том, что под действием ионизирующего излучения в некоторых твердотельных изоляторах (кристаллах и стеклах) носители электрических зарядов (электроны и дырки) изменяют свое положение и частично задерживаются в местах, где имеются дефекты кристаллической решетки с соответствующими максимумами или минимумами электрического поля. Центры, образованные в результате захвата носителей заряда, обладают некоторыми разрешенными энергетическими уровнями, между которыми возможны квантовые переходы носителя заряда, соответствующие испусканию или поглощению энергии. Это может отражаться в изменении оптических свойств (цвета и оптической плотности) стекла, в появлении способности к люминесцентному возбуждению под действием видимого и ультрафиолетового света (радиофотолюминесценции), в излучении световых квантов при освобождении носителей зарядов из центров-ловушек под действием теплового возбуждения (радиотермолюминесценции). Интенсивность возникающей люминесценции пропорциональна дозе излучения, в связи с чем эти методы применяются для измерения дозы излучения.

Для измерения доз нейтронов применяют наборы активационных детекторов, в которых поток и доза нейтронов определяются по наведенной в разных веществах активности. С той же целью применяются трековые детекторы, работа которых основана на регистрации следов тяжелых заряженных частиц, образующихся в веществе под действием нейтронов. Такими частицами могут быть осколки деления нептуния, изотопов урана в специальной пластинке – радиаторе, подвергнутой действию нейтронов. Следы образуют на специальной пленке – детекторе, находящейся в контакте с радиатором. Треки становятся видимыми после травления детектора (например, щелочью) и учитываются под микроскопом. Трековый метод, так же как и активационный метод, позволяет оценить флюенсы нейтронов в определенных энергетических диапазонах с последующим расчетным определением дозы. Из-за своей сложности эти методы применяются главным образом в лабораторных условиях.

Существуют и другие методы дозиметрии, применяемые в научных исследованиях и гигиеническом нормировании профессионального облучения. Некоторые из них, например, основанные на изменении электрических свойств полупроводников при действии излучения, перспективны для разработки полевых и индивидуальных средств дозиметрии.

Радиационное наблюдение в подразделениях, частях и учреждениях медицинской службы осуществляется с помощью индикаторов радиоактивности, предназначенных для обнаружения, сигнализации и измерения ионизирующих излучений, и рентгенометров, позволяющих осуществлять измерение уровня радиации на местности. Начинается оно с использования индикатора-сигнализатора ДП-64,пульт которого устанавливается в помещении дежурного по части. Индикатор-сигнализатор ДП-64 предназначен для постоянного радиационного наблюдения и оповещения о радиоактивной зараженности местности. Прибор работает в следящем режиме и при мощности дозы гамма-излучения 0,2 Р/ч и выше подает звуковой (раздаются щелчки) и световой (мигает лампочка) сигналы.

Измеритель мощности дозы ИМД-21 предназначен для измерения мощности экспозиционной дозы гамма-излучения и подачи светового сигнала о превышении порогового значения мощности экспозиционной дозы. Измеритель устанавливается в стационарных (ИМД-21С) или подвижных (ИМД-21Б) объектах.

Прибор ИМД-21 измеряет мощность экспозиционной дозы гамма-излучения от 1 до 10000 Р/ч с выводом информации на пульт управления. Время установления рабочего режима 5 мин, время измерения и срабатывания сигнализации до 10 с. Блок детектирования (датчик со счетчиком) благодаря наличию соединительного кабеля может выноситься за пределы помещения до 200 м. Прибор может работать круглосуточно в автоматическом режиме.

Для измерения зараженности личного состава, вооружения и военной техники, различных объектов, воды и продовольствия предназначены радиометры. Однако степень радиоактивной зараженности установить непосредственно в единицах активности технически трудно. Поэтому в ряде случаев о степени зараженности различных объектов судят косвенно, измеряя мощность дозы гамма-излучения от их поверхности, которая в определенных пределах пропорциональна степени радиоактивной зараженности. В полевых радиометрах единицей измерения мощности дозы гамма-излучения служит мР/ч.

Измеритель мощности дозы ДП-5В предназначен как для измерения уровней гамма-радиации на местности (то есть является рентгенометром), так и для определения радиоактивной зараженности различных предметов по гамма-излучению (то есть используется как радиометр). Мощность дозы гамма-излучения определяется в миллирентгенах в час для той точки пространства, в которой помещен при измерениях блок детектирования прибора. Кроме того, имеется возможность обнаружения бета-излучения.

Прибор состоит из измерительного пульта, блока детектирования, часто называемого зондом, соединенного с пультом при помощи гибкого кабеля длиной 1,2 м и раздвижной штанги, на которую крепится зонд. На блоке детектирования вмонтирован контрольный источник. Диапазон измерений прибора по гамма-излучению составляет от 0,05 мР/ч до 200 Р/ч, погрешность измерений прибора в нормальных климатических условиях не превышает ± 30% от измеряемой величины.

Назначение и принцип действия модификаций прибора ДП-5А и ДП-5Б те же, что и ДП-5В. Различия состоят в некоторых конструктивных изменениях и частично в электрической схеме.

Измеритель универсальный ИМД-12 позволяет провести измерение мощности дозы гамма-излучения в диапазоне от 10 мкР/ч до 999 Р/ч, а также измерение интенсивности бета-излучения с поверхностей и измерение удельной бета- и альфа- активности продовольствия, воды и фуража. Для осуществления каждой из этих функций к измерительному пульту прибора присоединяется соответствующий блок детектирования.

При воздействии на человека проникающей радиации ядерного взрыва, а также внешнего облучения в зонах радиоактивного заражения основным фактором, определяющим степень поражения, является доза облучения. Определение доз ионизирующих излучений, полученных личным составом, осуществляется с помощью измерителей доз или дозиметров.

Общевойсковые измерители дозы, к которым относятся приборы ДКП-50А (в составе комплекта ДП-22В) и ИД-1 (в комплекте того же названия) используются преимущественно для контроля доз облучения личного состава в подразделениях. Индивидуальные дозиметры ДП-70МП и ИД-11 применяются, главным образом, для диагностики лучевого поражения и определения степени его тяжести у раненых и больных на этапах медицинской эвакуации.

Комплект дозиметров ДП-22Всостоит из зарядного устройства ЗД-5 и 50 дозиметров ДКП-50А. Дозиметры ДКП-50А обеспечивают измерение индивидуальных доз гамма-облучения в диапазоне от 2 до 50 рентген при мощности дозы от 0,5 до 200 Р/ч. Отсчет измеряемых доз производится по шкале, расположенной внутри дозиметра и отградуированной в рентгенах. Саморазряд дозиметров в нормальных условиях не превышает 2 деления за сутки, а погрешность измерений – не более ±10% от максимального значения шкалы. Во время работы в поле действия гамма-излучения дозиметр носят в кармане одежды. Периодически наблюдая в окуляр дозиметра, определяют по положению изображения нити на шкале величину дозы гамма-излучения, полученную во время работы.

Комплект измерителя дозы ИД-1 состоит из 10 индивидуальных дозиметров ИД-1 и зарядного устройства ЗД-6. Он предназначен для измерения поглощенных доз гамма-нейтронного излучения в диапазоне от 20 до 500 рад с мощностью дозы от 10 до 360000 рад/ч. Основная погрешность измерения поглощенных доз гамма-нейтронного излучения не превышает ± 20%, а саморазряд дозиметра в нормальных условиях составляет не более 1 деления в сутки.

Индивидуальный измеритель дозы ИД-11 и измерительное устройство ИУ обеспечивает измерение поглощенной дозы гамма- и смешанного гамма-нейтронного излучения в диапазоне от 10 до 1500 рад. Доза нейтронов регистрируется по тепловой составляющей нейтронного спектра. ИД-11 накапливает дозу при дробном (периодическом) облучении и сохраняет набранную дозу в течение длительного времени (не менее 12 мес.). Измерительное устройство обеспечивает многократное измерение одной и той же дозы. Регистратор предназначен для использования в стационарных и полевых условиях. Измерительное устройство дает показания в виде цифрового отсчета, соответствующего величине поглощенной дозы гамма-нейтронного излучения. Время прогрева регистратора – 30 мин, время непрерывной работы – 20 ч. Время измерения поглощенной дозы не превышает 30 с.

Химический гамма-нейтронный дозиметр ДП-70МП в комплекте с полевым колориметром ПК-56Мпредназначается для измерения в полевых условиях доз суммарного гамма-нейтронного излучения, а также “чистого” гамма-излучения в дозах от 50 до 800 Р в интервале мощностей доз от 1 до 250000 Р/ч. Отсчет измеряемых доз производится по шкале передвижного ушка полевого колориметра ПК-56М непосредственно в рентгенах. Погрешность измерения полученной дозы гамма-излучения составляет ± 25%. Время развития максимальной окраски в рабочем растворе дозиметра составляет 40-60 мин с момента прекращения воздействия гамма-излучения. Продолжительность сохранения окраски без изменения – не менее 30 сут.

Наши рекомендации