P- и n- полупроводники. P-n- переход
Лекция 10-11
ЭЛЕКТРОННОЕ МЕДИЦИНСКОЕ ОБОРУДОВАНИЕ
Классификация медицинского электронного оборудования
Электронное медицинское оборудование интенсивно используется во всех областях медицины. Прогресс в диагностике и лечении зависит от степени использования различного рода специального оборудования. Медицинская электроника является областью электрической технологии, которая занимается разработкой и эксплуатацией медицинского электронного оборудования.
Все множество медицинских электронных приборов можно классифицировать в общих чертах в несколько групп: a). диагностические приборы, предназначенные для получения информации относительно состояния организма пациента; б). приборы, предназначенные для всех видов лечения, включая физиотерапевтические приборы; c). компьютеры, предназначенные для обработки и сохранения медицинской информации.
Основы безопасного проектирования
Каждый медицинский прибор должен быть безопасным по ряду критериев, предъявляемых нормами безопасности. Безопасность каждого прибора гарантирована его правильной конструкцией. Существует несколько классов медицинских устройств по безопасности, гарантирующей защиту пациентов и медицинского персонала от электрической травмы.
Класс 0 - безопасность устройств гарантируется только электрической изоляцией. Это устройства повседневного использования, которые не предназначены специально для лечебных целей.
Класс І - безопасность гарантируется не только электрической изоляцией, но также заземлением прибора. Разъем прибора должен быть оснащен заземлением.
Класс 0I - заземление достигается проводником, который должен быть отведен на специальный терминал.
Класс II - прибор имеет не только основную, но также дополнительную расширенную электрическую изоляцию. Прибор этого класса не имеет заземления.
Класс III - кроме электрической изоляции, безопасность от электрической травмы гарантируется автономным низковольтным блоком питания (менее чем 24 вольт).
Физические основы медицинского проектирования
Полупроводники. Зонная теория.
Наиболее часто медицинское электронное оборудование включает различные полупроводниковые компоненты: полупроводниковые диоды, транзисторы и т.п. Полупроводники - вещества, занимающие по электропроводности промежуточное положение между проводниками и изоляторами.
В металлах валентная зона и зона электропроводности могут перекрываться. Электроны валентной зоны становятся электронами электропроводности. У металлов таких электронов много, поэтому они являются хорошими проводниками электрического тока.
В изоляторах энергетические уровни валентной зоны полностью заполнены электронами. Полоса электропроводности пустая. Две полосы разделены широкой запрещенной энергетической полосой. При комнатной температуре электроны не могут приобрести достаточную энергию для перемещения из зоны валентности в зону электропроводности.
В полупроводниках (кремний, германий и т.п.) вся энергетические уровни в зоне валентности также заняты электронами. Но запрещенная зона между зонами валентности и электропроводности достаточно узкая. При нормальной температуре энергия некоторых электронов валентности достаточна для того, чтобы пересечь запрещенную зону и достичь зоны электропроводности, где они могут стать электронами электропроводности. Таким образом, электроны могут перемещаться как носители отрицательного заряда.
Когда электрон покидает атом, становясь свободным, образуется вакантное место, или дырка. Электрон соседнего атома может заполнять эту дырку (рекомбинация). Таким образом, дырки ″перемещаются″как носители положительного заряда.
P- и n- полупроводники. P-n- переход.
Чистый полупроводник имеет равное число носителей заряда обоих знаков: число электронов равно числу дырок. Добавляя в полупроводник небольшое количество примесей, можно создать преобладание определенных носителей заряда.
Атом германия, например, имеет четыре валентных электрона. Они формируют ковалентные связи с четырьмя соседними атомами кристаллической решетки. Атомы мышьяка имеют пять валентных электронов. Если их добавить к кристаллу германия, каждый из этих электронов формирует связи с четырьмя электронами соседних атомов германия. Пятый электрон остается свободным, и может перемещаться через кристалл. Это приводит к образованию некоторого числа свободных электронов. Такой смешанный полупроводник называется n-полупроводником, где "n" означает отрицательный заряд электрона. Дырок в таком полупроводник меньше, чем электронов.
Обратное получается, если к кристаллу германия добавить трехвалентные атомы, например, индий. Каждый из атомов индия в решетке германия окружен четырьмя электронами, с тремя из которых формирует ковалентные связи, а на месте четвертой связи из-за отсутствия у индия еще одного валентного электрона формируется дырка. Таким образом, происходит огромное увеличение числа дырок. Так формируется р-полупроводник, в котором основными носителями заряда являются дырки, или положительные заряды.
С помощью специального технологического процесса p- и n- полупроводники соединяют между собой, при этом образуется p-n- переход. Это соединение очень тонкое - порядка 1 микрометра. Высокая концентрация электронов на одной стороне p-n- перехода и дырок на другой стороне заставляет их перемещаться через p-n- переход в противоположных направлениях.
Электроны, которые переместились на сторону p-полупроводника, рекомбинируют там с дырками. Эти дырки, следовательно, исчезают, и на стороне p-полупроводника появляется избыточный отрицательный заряд. Аналогично в n- полупроводнике создается избыточный положительный заряд. Результатом этого является формирование разности потенциалов на границе полупроводников обоих типов, которая прекращает ток электрических зарядов через p-n- переход. Узкая область в p-n- переходе, ограничивающая ток свободных носителей заряда, называется запирающим слоем. Он ведет себя как изолятор.
p-n- переход имеет одностороннюю электрическую проводимость. Электрический ток может пройти через него только в одном направлении - из p-полупроводника в n- полупроводник. Если увеличить прикладываемую разность потенциалов, ток проходит через p-n- переход̣. Такое подключение является пропускным.
Когда направление электрического тока меняется на противоположное, через p-n-переход течет малое число носителей заряда. Это запирающее подключение диода в цепь. Односторонняя электропроводность p-n-перехода используется для выпрямления переменного электрического тока полупроводниковыми диодами.
Полупроводниковый диод состоит из кристалла, часть которого n-типа и часть p-типа. Он позволяет току проходить только в одном направлении и эффективно блокировать ток в другом направлении. Используется для преобразования переменного электрического тока в постоянный ток.
Транзистор
Транзистор используется как усилитель электрического тока. Биполярный транзистор сделан из трех слоев p- и n- полупроводников. Они называются соответственно эмиттер (E), база (B) и коллектор (C). База умышленно делают очень тонкой. Функцией эмиттера является впрыскивание большого числа носителей заряда в базу. Коллектор извлекает их из базы.
Есть два типа транзисторов: p-n-p и n-p-n. В p-n-p- транзисторах, эмиттер p-типа, база - n- типа и коллектор p- типа. В n-p-n- транзисторах эмиттер - n- типа, база - p- типа и коллектор является n-типа. Таким образом, транзистор можно рассматривать как два p-n- перехода.
Транзисторы широко используются для усиления силы, напряжения и мощности электрического тока. Транзистор может быть размещен в нескольких режимах в цепях усилителя.
Эмиттер-база p-n-переход подключен в пропускном направлении и имеет маленькое электрическое сопротивление. Наоборот, база-коллектор p-n- переход подключен в запирающем направлении. Его характеризует высокое сопротивление, и только небольшой ток может протекать через такое соединение.
Когда ток течет через входную цепь, большинство носителей заряда (дырки) легко проникают в базу. Ширина базы достаточно мала, и наибольшее число дырок, поступивших из эмиттера, протекая через базу, достигает коллектора. Результатом этого служит то, что небольшие изменения входного тока в базу вызывают гораздо большие изменения силы тока в выходной цепи. В этом случае транзистор может служить в качестве усилителя силы тока. Изменяя некоторые компоненты цепи, можно увеличить напряжение и мощность.
В настоящее время широко используют цепи, которые включают много транзисторов и других компонентов.