Основные источники радиоактивного излучения, после аварии на Фукусиме

Наибольшую обеспокоенность, в первые сутки и недели после аварии, вызывают выбросы радиоактивного йода. В ближайшие десятилетия наибольшую опасность будет представлять цезий-137 и, в меньшей степени - загрязнение стронцием-90. В долгосрочном плане (от сотен до тысяч лет) значительную роль будут играть изотопы плутония и америций-241, хотя их уровни радиологически не столь существенны.

Наиболее летучие радионуклеиды - Йод-131 и Цезий-137. Их период полураспада - 8 дней и 30 лет, полный распад - два-три месяца и 200-300 лет, соответственно. Они в виде аэрозоля, на частицах пыли, с паром и в воде, легко переносятся воздушными, атмосферными потоками и морскими течениями на огромные расстояния. После аварии на АЭС Фукусима (Япония, в 2011-м году), в результате произошедшего там сильного девятибалльного землетрясения и цунами, радиоактивный иод (выброшенный из энергоблоков станции вверх, взрывами водорода) облетел планету за три-четыре недели, по воздуху (в это время года - ветер дул, в основном, в сторону Тихого океана, поэтому наш Дальний Восток не пострадал от радиоактивных осадков, последствий аварии на Японской электростанции). Со временем, он постепенно теряет свою излучательную активность.

Плутоний-239 и Стронций-90 (полураспад - 24000 и 28 лет, соответственно) - как более тяжёлые, по весу, осыпаются в ближайшей, тридцатикилометровой зоне от очага заражения, в зависимости от высоты выброса, розы ветров и их скорости.

Осаждению радионуклидов из воздушных масс, способствует и дождь, вызывая вторичное загрязнение по водостокам, в основном - цезием-137.

Йод-131 - при попадании с пищей внутрь организма, накапливается в щитовидной железе (особенно - при йододефиците в щитовидке), Стронций-90 - надолго оседает в костях. В таком виде - они вызывают, особенно опасное, внутреннее облучение.

Обсуждение темы АЭС Фукусима на профессиональном форуме http://forum.atominfo.ru/index.php?showforum=11


Виды излучения и их основные источники:
Альфа-частицы (ядра гелия) - Радон, Торон, Кобальт-60, Уран.
Бета-чистицы - Калий-40, Цезий-137, Рутений-106, Тритий, Прометий-147, Стронций-90
Гамма-поле - Цезий137. Кобальт60, Цинк-65
Рентгеновское жесткое излучение - Америций-241
Нейтронное - Плутоний.

Из перечисленных, больше светят (имеют наибольшую активность), в порядке убывания: изотопы йода-131 (в первые дни и недели после аварии), цезия-137, стронция-90,89 и радиоизотопы плутония. Такая картина - и в случае ядерной аварии и при атомном взрыве.


Характеристики, энергии излучений, их свойства:

Альфа-частицы (ядра гелия) - их кинетическая энергия равна 4-9 МэВ, при скоростях до 10 тыс.км/с. Движение этих массивных частиц, обычно, прямолинейно. Летящие альфачастицы можно отклонить сильным электрическим и магнитным полями.

Бета-частицы (электроны, протоны...) имеют энергию от нескольких сотен килоэлектронвольт до двух мегаэлектронвольт. Их средняя энергия составляет, обычно, треть от максимальной в простом спектре. Движущиеся бетачастицы отклоняются электрическим и магнитным полем и рикошетят от внешних электронов атомов вещества, в результате чего имеют сложную, ломаную траекторию движения.

Гамма-излучение это электромагнитное излучение, с энергией от нескольких кэВ до 4-9 МэВ (жесткое), распространяющееся со скоростью света. Фотоны гаммаизлучения не обладают зарядом и, поэтому, не отклоняются электрическим и магнитным полями.

Нейтронное излучение - электрически нейтральные нейтроны, с энергией от 10 кэВ до 20 МэВ в непрерывном спектре.

Рентгеновские лучи – вид электромагнитного излучения с длиной волны от 10-12 до 10-7м, в энергетическом диапазоне от 100эВ до 0,25МэВ. Характеристическое рентгеновское излучение – электромагнитное излучение, испускаемое при переходах электронов с внешних электронных оболочек атома на внутренние.
Основные источники радиоактивного излучения, после аварии на Фукусиме - student2.ru
Рис.2 Шкала длин волн электромагнитного излучения.

Основные источники радиоактивного излучения, после аварии на Фукусиме - student2.ru Дозиметрические приборы для измерения ионизирующих излучений (ИИ):

Радиометры – используются для измерения плотности потока и мощности доз ИИ, а так же активности радионуклидов.

Спектрометры – предназначены для изучения распределения излучений по энергиям, заряду, массам частиц ИИ, то есть, для детального анализа образцов каких-либо материалов, источников ИИ.

Дозиметры – применяют для измерения индивидуальной эквивалентной дозы и мощности доз рентгеновского, бета- и гамма-излучения в диапазоне энергий от 50 кэВ до 2-3 МэВ. Распространенные модели: ДКГ и ДКС (индивидуальные), МКС (дозиметр-радиометр, на фото) - отличаются по классу точности и опциям (бытовые или профессиональные), количеству и типу детекторов, конструкции (переносные или стационарные) и т.д.

Универсальные бытовые дозиметры и радиометры – в зависимости от комплектации, могут совмещать в себе различный функционал. Например, в приборе "Экотестер СОЭКС" имеется встроенный нитрат-тестер, для проверки продуктов питания на содержание в них нитратов. Дозиметр-радиометр МКС-05 "Терра-П" оснащён ещё и часами с будильником, а стационарный "Анализатор экологии АОМ-22" - оборудован алкотестером и функцией определения качества окружающего воздуха (по наличию и концентрации в нём пыли и загрязняющих веществ). В дозиметре SMG-1 (питается стандартным телефонным аккумулятором, ёмкостью 850 mAh, чего хватает на 300 часов непрерывной работы), имеющем термометр, на дисплее, наряду с уровнем радиационного фона, показывается и температура окружающего воздуха. Новые модели измерителей радиации, дополнительно, могут иметь разъем mini-USB и соединительный провод - для интеграции с компьютером (переноса собранной информации на ПК, чтобы проанализировать, посчитать статистику и оформить результаты измерений в графическом виде) и, что важно, для обеспечения возможности питания прибора при разряженной батарее или, если в качестве источника питания используются аккумуляторы - для их подзарядки (для активации этой опции - в меню интерфейса надо включить этот режим). В современных аппаратах (Терра МКС, СОЭКС 01М Defender, SMG1, ДКГ-РМ), обычно, встроена энергонезависимая память для хранения результатов замеров, которые можно скинуть и на комп - с помощью USB-кабеля или по Bluetooth-интерфейсу.

В качестве детектора радиации применяются, обычно:
- камерно-ионизационные газоразрядные счётчики Гейгера-Мюллера типа СБМ-20 (стандартные, бета фильтр - двухслойный, из меди и свинца, со всех сторон экранирует датчик);
- СБМ-21 (малочувствительный к низкоэнергетическому гамма-излучению и почти не реагирует на бетту);
- торцевые счетчики Бета-1/5 (окно сделано из слюды) - наиболее точные, и более дорогие, по сравнению с двумя вышеназванными.

Широкий диапазон измерений, максимально высокая точность и надёжность в работе - есть только у полнофункциональных приборов, нормальных размеров и профессионального класса, но и цена их значительно выше, чем у бытовых моделей.

Опции проф. аппаратуры:
- режим оперативного контроля удельной активности 137Cs в жидких и сыпучих пробах в полевых условиях;
- возможность измерять плотность потока альфа- и бета-частиц с загрязненных поверхностей, мощность амбиентного эквивалента дозы и дозу рентгеновского и гамма-излучения;
- энергонезависимая память и чтение записанных данных на табло или персональный компьютер;
- возможность дальнейшего дооснащения прибора дополнительными блоками детектирования, по мере необходимости

Правила эксплуатации. Не ронять и беречь от попадания внутрь корпуса пыли, влаги и агрессивных газов, иначе - собьются настройки и прибор выйдет из строя (это касается и внешних блоков детектирования). Промышленные, профессионального класса радиомерты и дозиметры могут работать при высокой влажности (до 90-100%, при +25 градусов), а вот недорогие бытовые приборы - только до 70-80% и их надо как-то защищать от воды и конденсата водяного пара (помещать в мягкий полиэтилен, герметично под плёнку, через которую можно было бы включать тумблеры и нажимать на кнопки). Не разбирать, не ломать пломбу, ... только в этом случае будет точность. Время на установление рабочего режима ("прогрев прибора") - приблизительно 10 секунд.

Точность измерений. Для радиометрических приборов характерен значительный разброс отсчётов (до плюс/минус 20-40%). В этих устройствах велика и длительность времени на измерение. Для улучшения сходимости результатов, хотя бы до +/- 10-15% - увеличивают количество и время измерений (в том числе - используют дублирующие аппараты). Производители уменьшают приборную погрешность, повышая чувствительность - наращивая количество и качество детекторов ионизирующего излучения (газоразрядных счётчиков или различных видов сцинтилляторов из кристаллов, специальной пластмассы или керамики) в радиометрических устройствах, что ощутимо сказывается на стоимости комплекта.

Дополнительные погрешности (разброс показаний) прибора вызывают следующие причины:
температура, отличная от комнатной, меняет параметры электрической схемы - до +/- 15%
повышенная влажность и конденсат - до +/- 10%
разряд батареи - до +/- 10%
вариации (короткопериодные) космического излучения и рентгеновского - сотые-десятые доли микрозиверта в час
// все они действуют интегрально (в общей сумме)

Периодическая поверка и калибровка проводится раз в год - это стандартный межповерочный интервал для аппаратуры. Бытовые радиометры, дозиметры - можно сверить по новым, недавно купленным или только что поверенным приборам, проведя параллельные замеры в режиме повышенной точности, "на ровном поле".

Результаты измерений, полученные с помощью бытового прибора (даже с преемлемой, достаточно высокой точностью), не могут быть использованы для официальных заключений государственными органами. Для этого нужна профессиональная, сертифицированная аппаратура, прошедшая госповерку и, собственно, квалифицированный специалист, оператор, который правильно проведёт измерения, выполнит расчёты и оформит результаты исследований.


Пример расчета
В определённом месте зафиксирован радиактивный фон от гамма-излучения (гаммафон) равный 50 мкР/час (50 мкрад/час; 0.5 мкГр/час; 0.5 мкЗв/час)
Находясь там 1 час - человек получит эквивалентную дозу (ЭД) в 50 мкБэр (соотв. 0.5 микрозиверт).
За год это составит: ЭД = 50 мкР/час * 8760 час = 438000 мкБэр = 438 мБэр = 4.48 мЗв/год - почти на пределе допустимой поглощенной дозы (должно быть "не более 5 миллизиверт в отдельный год из любого пятилетнего интервала времени").


"Предельно допустимая доза" (ПДД) — наибольшее значение индивидуальной эквивалентной дозы за календарный год, для профессиональных работников (постоянно или временно работающих непосредственно с источниками ионизирующих излучений), при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Для категории Б (население, включая лиц из персонала, вне сферы и условий их производственной деятельности) - определяется "предел дозы" (ПД). В Российской Федерации - законодательным документом являются "Нормы радиационной безопасности" (НРБ 99/2009). Величины дозовых пределов (бэр/год) внешнего и внутреннего облучения - устанавливаются для трёх разных групп критических органов и и тканей организма человека.
1 группа - всё тело, гонады и красный костный мозг.
2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, лёгкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.
3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы ног.
Диапазон значений для категории Б:
ПД от 0.5 до 3 бэр (0.5-30 мЗв/г).

Наши рекомендации