Химический состав молока
Молоко состоит более чем из 300 компонентов, основные из которых вода, белки, жир, лактоза, микроэлементы, витамины, ферменты, гормоны и др.
Вода— среда, в которой растворены или распределены все остальные компоненты молока, образующие устойчивую коллоидную систему, позволяющую подвергать молоко различным технологическим процессам. 95-97% воды находится в свободном состоянии. Эту воду можно удалить при нагревании молока. В ней растворены лактоза, минеральные вещества, кислоты. Кроме того, различают воду связанную (2,0-3,5%), набухания и кристаллизационную. Способностью связывать воду обладают белковые вещества, полисахариды, фосфатиды, так как они имеют гидрофильные группы. Вода набухания содержится в лиофильных коллоидах с мицеллярным строением (в белках). Кристаллизационная вода связана с молекулами лактозы.
После высушивания навески молока при температуре 103-105°С до постоянной массы остается сухое вещество (сухой остаток), в состав которого входят все компоненты молока, за исключением воды. Компоненты сухого вещества обусловливают пищевую ценность молока и его технологические свойства при производстве молочных продуктов.
Белки. Содержание белков в молоке коров в среднем составляет 3,3%. 78-85% белков представлены казеином, остальная часть сывороточные белки, к которым 6т-носятсТ^оТ^ляКтЖьбумйн, (3-лактоглобу-лин, альбумин, иммуноглобулины, проте-озо-пептоны и лактоферрин. К белкам молока относятся также ферменты, некоторые гормоны (пролактин), белки оболочек жировых шариков и белковые вещества микробных клеток.
Казеин [NH2R(COOH)4(COO)2Ca] в молоке находится в количестве 2,7% в коллоидном состоянии. Он является гетерогенным белком, и в зависимости от содержания фосфора, серы и способности к свертыванию кислотой или сычужным ферментом его можно разделить на альфа-, бета-, гамма- и каппа-фракции. Не-фракционированный казеин содержит углерода 53%, водорода— 7,1%, азота — 15,6%, кислорода — 22,6%, серы — 0,8%, фосфора — 0,9%. Гамма-форма казеина
не изменяется под действием сычужного фермента, тогда как альфа- и бета-формы осаждаются с образованием сгустка (параказеина). Каппа-фракция изучена слабо.
При рН свежего молока казеин имеет отрицательный заряд. Равенство положительных и отрицательных зарядов (изоэлектрическое состояние) наступает в кислой среде при рН 4,6-4,7. Казеин относится к фосфопротеинам (содержит фосфор) и имеет свободные аминные и карбоксильные группы. Карбоксильных групп в казеине почти в 2 раза больше, чем аминных, поэтому в нем кислотные свойства преобладают над основными. В молоке казеин соединен с кальциевыми солями и образует казеинфосфаткаль-циевый комплекс.
Казеин обладает амфотерными свойствами — кислотными и щелочными. Свободные аминогруппы казеина взаимодействуют с альдегидами, например с формальдегидом, на чем основано определение содержания белков в молоке методом формольного титрования. Казеин можно выделить и воздействием слабых кислот. В этом случае казеинфосфаткаль-циевый комплекс распадается на чистый казеин и соль кислоты, в реакцию с которой он вступил. Такая реакция наблюдается при естественном скисании молока, когда под действием молочнокислых микроорганизмов происходит разложение лактозы с образованием молочной кислоты. Эту реакцию можно представить в следующем виде:
NH2- R-(COOH)4(COO)2Ca +
+ 2СН3СН(ОН)СООН ->
-> (СН3СН(ОН)СОО)2Са +
+ NH2-R- (СООН)6.
При этом способе осаждения казеина получается осадок в виде мелких хлопьев, кислых на вкус.
Сывороточные белки. После осажде- i ния казеина из обезжиренного молока
сычужным ферментом или кислотой в
сыворотке 0CTaeraiJ)J34),8% белков. Ос
новными из них являются^лактоглобу-
лин, а-лактальбумин, альбумин сыворот-
ки'крови, иммуноглобулины, протеозо-
пептоны, лактоферрин. Сывороточные
белки по содержанию незаменймызГажи-
нокйслот биологичеЖи^оле,&--волноцен-
ны (табл. 18)Г " '' \
Р-лактоглобулин составляет около 50% всех белков сыворотки. При пастеризации он подвергается денатурации. Биологическая роль его не выяснена.
ос-лактальбумина в молоке 2-5% от общего количества его белков. Он тонко-диспергирован, не коагулирует в изоэлек-трической точке в силу большой гидра-тированности, не свертывается под дей-
ствием сычужного фермента, термостабилен. Необходим для синтеза лактозы из галактозы и глюкозы.
Иммунные глобулины составляют 1,9-3,3% общего количества белков молока. В молозиве их количество повышается и достигает 90% всех сывороточных белков. Они выполняют функцию антител. Из молока коров выделено 3 группы иммуноглобулинов: I, А и М. В количественном отношении преобладают иммуноглобулины группы I. Аминокислотный состав основных белков коровьего молока представлен в таблице 18. Протеозопеп-тоны составляют около 24% сывороточных белков и 2-6% всех белков молока, относятся к наиболее термостабильным сывороточным белкам. Они не осажда-
ются при нагревании до 100°С в течение 20 минут. Количество их увеличивается в процессе хранения молока при низких плюсовых температурах (3-5°С). Биологическая роль этих белков не выяснена. Лактоферрин — красный железосвя-зывающий белок, по свойствам напоминающий трансферрин крови. Обладает бактериостатическим действием. В молоке коров его содержится 0,1-0,4 мг/мл, в молозиве — 1-6 мг/мл.
Ферменты.Из молока здоровых животных выделено более 20 истинных ферментов. Одни из них секретируются в клетках молочной железы (щелочная фосфатаза, лактосинтаза, лизоцим), другие переходят в молоко из крови животных (альдолаза, катал аза, протеиназа). Кроме истинных, в молоке присутствуют ферменты, вырабатываемые микрофлорой молока. Ферменты, находящиеся в молоке и молочных продуктах, имеют большое практическое значение. На действии ферментов классов оксидоредуктаз, гид-ролаз, трансфераз и других основано производство кисломолочных продуктов и сыров. Протеолитические и липолитиче-ские ферменты вызывают изменения, приводящие к снижению пищевой ценности и возникновению пороков молока и молочных продуктов. По активности некоторых ферментов можно судить о санитарно-гигиеническом состоянии сырого молока и эффективности его пастеризации. К оксидоредуктазам относят редук-тазы, оксидазы, пероксидазу и каталазу.
Редуктазы__накапливаются в сыром молоке при размножении в 1ем бактерий. Поэтому бактериальную обсеменен-*ность молока можно определить по продолжительности восстановления добавленного к молоку резазурина или метилено-вого голубого. Оксидазы вырабатываются клетками молочной железы (ксантинок-сидаза) и микрофлорой молока (оксидазы аминокислот). Ксантиноксидаза катализирует окисление пуриновых оснований — гипоксантина и ксантина — до мочевой кислоты, а альдегидов — до кар-боновых кислот. Пероксидаза синтезируется клетками молочной железы и частично освобождается из лейкоцитов, обладает антибактериальными свойствами; инактивируется при температуре около 80°С, что используют в молочной промышленности для контроля эффективности пастеризации молока.
Каталаза переходит в молокоJI3 клеток молочной же_лезы. а также вырабатывается микрофлорой молока Hjieihco-цитами. В молоке здоровых животных каталазы содержится мало, а в молозиве и молоке больных животных ее количество резко увеличивается. В связи с этим определение активности каталазы используют в качестве метода обнаружения молока, полученного от больных животных (мастит и др.).
К гидролазам и ферментам других классов относят липазы, фосфатазы, (3-га-лактозидазу, лизоцим, протеиназы, рибо-нуклеазу и др.
Липазы представлены нативной и бактериальной липазами, А-, В-эстеразами, холинэстеразой и липопротеидлипазой. Они способствуют гидролизу жира с выделением низкомолекулярных жирных кислот, что приводит к прогорканию молока. Истинные липазы разрушаются при температуре 74-80°С, бактериальные — при 85-90°С.
Фосфатазы: в молоке содержатся щелочная фосфатаза, секретируемая клетками молочной железы и микроорганизмами, а также фосфопротеидфосфатазы, неорганическая пирофосфатаза и АТФаза. Щелочная фосфатаза катализирует гидролиз эфиров фосфорной кислоты с образованием неорганического фосфора. Инак-тивируется она при температуре 72-74°С и выше. Это свойство положено в основу метода контроля эффективности пастеризации молока и сливок.
Лактаза (Р-галактозидаза) синтезируется молочнокислой микрофлорой (бактериями и дрожжами). Катализирует реакцию гидролитического расщепления лактозы на моносахариды — глюкозу и галактозу. Амилаза связана с лактоглобу-линовой фракцией белка молока. Количество ее повышается при заболеваниях животных. При пастеризации инакти-вируется. Лизоцим катализирует гидролиз полисахаридов клеточных стенок некоторых видов микробов. Он обусловливает бактерицидные свойства молока, термостабилен в кислой среде. В молоке коров его количество составляет около 13 мкг в 100 мл.
Пдотеиназы в молоко, видимо, переходят из крови, а также синтезируются микроорганизмами и лейкоцитами. Они катализируют гидролиз белков молока, в основном казеина. Микрофлора молока (гнилостные бактерии, микрококки) синтезируют протеиназы, вызывающие пороки вкуса молока и молочных продуктов. Молочнокислые бактерии вырабатывают кислые протеиназы, имеющие важное значение при производстве кисломолочных продуктов и сыров. Рибонуклеаза переходит в молоко из крови. Она катализирует расщепление рибонуклеиновой кислоты на нуклеотиды.
Трансферазы (истинные и бактериальные) катализируют переаминирование аминокислот в клетках молочной железы. ЛиазьЦистинные и бактериальные) в молоке представлены альдолазой, играющей важную роль в углеводном обмене молочной железы и микроорганизмов; карбоангидразой, катализирующей процесс дегидратации угольной кислоты; де-карбоксилазами, имеющими важное значение при производстве кисломолочных продуктов. Изомеразы играют важную роль в обмене веществ в клетках молочной железы и при брожении лактозы.
Липиды молока представлены молочным жиром и жироподобными веществами — фосфолипидами и стероидами.
Молочный жир — производное спирта глицерина и жщшых кислот. Среднее содержание его в молоке составляет 3,8%. В молочном жире обнаружено около 150
жирных кислот с числом атомов углерода от С4 до С26 (насыщенные, моно- и полиненасыщенные). Содержание в молоке главных жирных кислот представлено в таблице 19.
В парном или нагретом молоке жир находится в состоянии эмульсии, а в охлажденном — в виде суспензии. В 1 мл коровьего молока содержится от 1 до 12 млрд жировых шариков диаметром 0,1-20мкм. Поверхность жирового шарика окружена лецитино-белковой оболочкой. Температура плавления молочного жира 28-36°С, температура застывания — 18-23°С, коэффициент преломления — 1,453-1,455.
Из насыщенных жирных кислот в молочном жире в большом количестве содержатся пальмитиновая, миристино-вая и стеариновая, а из ненасыщенных — олеиновая, пальмитолеиновая, линолевая и миристолеиновая.
Из фосфолипидов в молоке имеется лецитин, кефалин, сфингомиелин, цереб-розиды. Суммарное их количество — около 0,06%. Фосфолипиды входят в состав оболочек жировых шариков, а также находятся в связи с белковой фазой и плазмой молока. Из стероидов в молоке присутствует холестерин (в комплексе с белками и в плазме молока) и эргостерин (входит в состав оболочек жировых шариков). В молоке стероидов 0,01-0,014%.
Лактоза в молоке коров составляет в
среднем находится в молекуляр-
ном состоянии и представляет собой ди-сахарид, состоящий из глюкозы и галактозы. По сравнению с сахарозой лактоза в 5 раз менее сладкая и хуже растворима в воде.
Минеральные вещества.Минеральный состав молока во многом зависит от минерального состава кормов. Минеральных веществ в молоке содержится в среднем 0,7%. Их подразделяют на макро- и микроэлементы. Макроэлементы содержатся в относительно больших количествах — 10-100мг/кг, их концентрация в молоке сравнительно постоянна; микроэлементы — в количествах, измеряемых микрограммами, концентрация их значительно варьирует в зависимости от кормления животных, условий первичной обработки и хранения молока.
К макроэлементам относят калий, натрий, кальций,_магний, фосфорГхлор и серу. Калии, натрий, кадьдийи магний находятся в молоке в основном в виде солей фосфорной и лимонной кислот. Около 95% калия и натрия присутствует в истинном растворе в виде лег-кодиссоциирующих солей, остальное их количество связано с казеином и находится в коллоидном состоянии. Кальций имеется в молоке в основном в коллоидной форме (около 30% — в виде коллоидного фосфата кальция и около 40% — в виде казеинаткальцийфосфат-ного комплекса). На долю истинного раствора приходится около 30% всего кальция.
Магний находится в молоке в истинном растворе (73-82%), остальное его количество входит в состав коллоидного фосфата магния и связано с казеином.
Фосфор в молоке представлен следующими соединениями (%): неорганическими солями в виде истинного раствора — 37, органическими эфирами в виде истинного раствора — 7, казеинкальций-фосфатным комплексом — 20, неорганическими солями в виде коллоидного раствора — 38,5, липидами — 1,5. Сера входит главным образом в состав белков.
Из микроэлементов в молоке содержатся алюминий, барий, бор, бром, ванадий, железо, йод, кадмий, кобальт, кремний, литий, марганец, медь, молибден, никель, селен, серебро, стронций, сурьма, фтор, хром, цинк. Распределение их между составными компонентами молока изучено недостаточно. Известно, что алюминий, медь, марганец, молибден, никель, цинк и йод связаны с белками молока, а бор — с жировой фазой. Около 90% всей меди молока связывается с казеином и сывороточными белками, 10% — с жировыми шариками (2-3% — с оболоченными белками, остальные 7-8% — с фосфолипидами).
Большая часть железа соединяется с а-казеином, остальная с Р-казеином и лактотрансферрином. Марганец связывается с сывороточными белками, олово — с (3-казеином. С белками молока соединяется йод (около 30%), а около 60% его количества находится в небелковых органических соединениях. 40% йода присутствует в сыворотке молока в виде неорганических соединений и около 5% связано с жиром.
Витаминысодержатся в молоке в различных количествах, что обусловлено поступлением их в организм коровы с кормом, интенсивностью синтеза микрофлорой рубца и степенью разрушения при обработке и хранении молока. Среднее содержание витаминов в 100 г молока составляет (мг): жирорастворимых — А — 0,02-0,2; D - 0,002; Е - 0,06; К — 0,032; водорастворимых — В^ — 0,05; В2 - 0,2; В6 - 0,1-0,15; В12 - 0,1-0,3; РР - 0,05-0,4; В3 - 0,28-0,36; С - 0,5-2,8; Н — 0,00001-0,00003.
Гормоныв молоко поступают из крови. Они принимают участие в образовании и выделении молока (пролактин, тироксин, лютеростерон, фолликулин, окситоцин, адреналин, инсулин и др.).
Газысоставляют 60-80 мл в 1 л молока, из них двуокиси углерода (углекислого газа) — 50-70%, азота — 20-30%, кислорода — 5-10%.
Химический состав молока представляет собой сложную полидисперсную систему. На его показатели оказывает влияние кормление и содержание животных, состояние здоровья, породность и многие другие факторы. Все это необходимо учитывать при ветсанэкспертизе молока и молочных продуктов.