Методы регистрации ионизирующих излучений, их характеристика, используемые детекторы и приборы
Радиоактивные излучения невидимы, не имеют цвета, запаха или других признаков, на основании которых человек мог бы заподозритьих наличие, поэтому обнаружение и измерение излучений производят косвенным путем на основании какого-либо их свойства.
В результате взаимодействия радиоактивного излучения с внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Эти процессы изменяют физико-химические свойства облучаемой среды, в том числе и биологических объектов. Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют следующие методы:
а) физические:
1. ионизационный - под воздействием ионизирующих излучений в среде (газовом объеме) происходит ионизация молекул, в результате чего электропроводность этой среды увеличивается. Если в данную среду поместить два электрода, к которым приложено постоянное напряжение электрического тока, то между электродами создается электрическое поле, в котором возникает направленное движение заряженных частиц: отрицательно заряженных - к аноду, положительно заряженных - к катоду, т.е. проходит так называемый ионизационный ток. Измеряя его величину, получают представление об интенсивности радиоактивных излучений. В качестве детекторов, работающих на ионизационном методе регистрации, чаще всего используются:
- газоразрядные счетчики Гейгера—Мюллера - цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью. При прохождении через детектор заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к образованию коронного разряда. Амплитуда сигнала достигает нескольких вольт и регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.
- ионизационные камеры- в них, как и в счетчике Гейгера, используется газовая смесь, однако напряжение питания в ионизационной камере меньше и усиления ионизации в ней не происходит.
- пропорциональные (газоразрядные) счетчики различных типов - имеют такую же конструкцию, как и счетчик Гейгера, но за счёт подбора напряжения питания и состава газовой смеси при ионизации газа пролетевшей заряженной частицей не происходит коронного разряда. Под действием электрического поля создаваемого вблизи положительного электрода первичные частицы производят вторичную ионизацию и создают электрические лавины, что приводит к усилению первичной ионизации созданной пролетевшей через счётчик частицы в тысячу-миллион раз. Пропорциональный счетчик позволяет регистрировать энергию частиц.
- полупроводниковый счетчик (твердотельная ионизационная камера) - устройство похоже на ионизационную камеру, но роль газа играет 7676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676 чувствительная область, в которой в обычном состоянии нет свободных носителей заряда. Попав в эту область заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне - дырки. Под действием приложенного к напыленным на поверхность чувствительной зоны электродам напряжения, возникает движение электронов и дырок, формируется импульс тока. Заряд импульса тока несет информацию о количестве электронов и дырок и соответственно об энергии, которую заряженная частица потеряла в чувствительной области. Если частица полностью потеряла энергию в чувствительной области, проинтегрировав токовый импульс получают информацию об энергии частицы. Полупроводниковые счётчики обладают высоким энергетическим разрешением.
- другие счетчики: камера Вильсона, пузырьковая камера, искровая камера, стриммерная камера, пропорциональная камера, дрейфовая камера.
2. люминесцентный - основан на способности веществ к отсроченному или немедленному свечению под воздействием излучения.
- флуоресцентный счетчик - детектирование основано на способности некоторых веществ (активизированное серебро и др.) накапливать энергию от ядерных излучений. Впоследствии при нагревании или освещении ультрафиолетом энергия отдается и измеряется с помощью термолюминесцентных и стеклянных дозиметров.
- сцинтилляционный счетчик - детектирование основано на способности атомов специальных веществ-сцинтилляторов возбуждаться под воздействием излучений и при возвращении в основное состояние испускать фотоны видимого света (сцинтилляции), которые улавливаются специальным прибором –фотоэлектронным умножителем. На выходе фотоэлектронного умножителя, появляется ток, по величине которого судят об излучении.
3. калориметрический - основан на измерении тепла, выделяемого в веществе при поглощении излучения. В медицинской практике не применяется из-за незначительного уровня тепловыделения и сложности его регистрации при дозах облучения, имеющих практическое клиническое значение.
б) химические - в их основе лежит количественное определение изменений в химических растворах (цвета, прозрачности, выпадения осадков, выделения газа), которые возникают в результате поглощения энергии излучения.
1. колориметрический - фиксирование с помощью цветных реакций изменения вещества под воздействием ионизирующего излучения. Например, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем; двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов воды, образующихся при ее облучении, а трехвалентное железо дает с красителем цветную реакцию. Изменение окраски растворов измеряется с помощью колориметра, по плотности окраски судят о дозе облучения.
2. фотографический - основан на измерении степени почернения фотоэмульсии, т.е. на регистрации восстановления галогенидов серебра в фотопленке с дальнейшим качественным или количественным анализом. Прохождение ионизирующего излучения через фотоэмульсию делает затронутые им кристаллы галогенидов серебра способными к проявлению, при этом плотность почернения пропорциональна дозе облучения. Сравнивая плотность почернения с эталоном, определяют дозу облучения, полученную пленкой. На этом принципе основана работа индивидуальных фотодозиметров.
в) биологические - основаны на способности излучений изменять биологические объекты. Величину дозы оценивают по уровню летальности животных, степени лейкопении, количеству хромосомных аберраций, изменению окраски и гиперемии кожи, выпадению волос, появлению в моче дезоксицитидина и др. Биологические методы не всегда точны и менее чувствительны по сравнению с физическими. Однако они незаменимы в случае определения относительной биологической эффективности тяжелых частиц с большой энергией, учете индивидуальных различий радиочувствительности, а также при невозможности определить дозу другими методами.
1. клинические - используется лишь для грубой оценки поглощенной дозы. Неточности в оценках дозы возникают из-за высокой вариабельности симптоматики у различных пациентов и влияния множества других факторов. Клиническая дозиметрия рекомендуется в случаях, когда не требуется большой точности дозиметрических исследований. Частота, сроки развития и степень тяжести симптомов имеют прямую зависимость от мощности. Например, начало рвоты через 2 часа и позже характерно для дозы облучения 1-2 Гр, через 1-2 часа - для дозы 2-4 Гр, через 30 мин-1 час - для дозы 4-6 Гр, менее, чем через 30 мин - для дозы 6-10 Гр.
2. гематологические - основаны на регистрации изменений в состоянии гемопоэтической системы, которая высокочувствительна к излучению.
- метод подсчета лимфоцитов - лимфоциты чрезвычайно радиочувствительны и реагируют в течение нескольких часов от начала облучения (даже в малых дозах по сравнению с другими клетками крови)
- метод подсчета гранулоцитов - доза облучения до 2 Гр вызывает постепенную депрессию числа гранулоцитов до 50 % через 30 дней после облучения. Дозы 2-5 Гр вызывают начальное повышение числа гранулоцитов (сдвиг влево), которое обычно длится только часы и сопровождается затем резким снижением (из-за снижения образования и поступления в кровь зрелых гранулоцитов). Через 2 недели после облучения возникает еще один подъем гранулоцитов (абортивный) с дальнейшим резким снижением их числа за несколько дней (из-за выхода в кровь клеток, находившихся на заключительных стадиях дифференцирования, а потому менее чувствительных к облучению). Дозы более 5 Гр обычно вызывают резкое снижение с дальнейшим постепенным снижением содержания вплоть до агранулоцитоза в течение 3 недель.
3. цитогенетические:
- подсчет хромосомных аберраций - основан на анализе дицентриков и других аберраций хромосом. В случае высоких доз (> 1 Гр острого облучения) необходим для планирования терапии, при подостром облучении используется для определения риска развития стохастических эффектов. С помощью данного метода можно обнаруживать «ложные тревоги», когда доза, зарегистрированная на индивидуальном дозиметре действительно не получалась владельцем; подтверждать подлинное сверхнормативное облучение и обеспечивать альтернативную оценку дозы независимо от физических методов; подтвердить или опровергнуть подозреваемое облучение лиц, не носящих индивидуальные дозиметры.
Возможные радиационно индуцированные повреждения ДНК: двойные разрывы, одиночные разрывы, повреждения оснований, сахаридов, сшивки ДНК-ДНК, ДНК-белок и др.
Чаще всего на практике используют подсчёт количества дицентриков в лимфоцитах и FISH-метод (Fluorescent In Situ Hybridization) - предварительное окрашивание определённых участков ДНК различными флуоресцентными красителями (прямой метод) или нефлуоресцирующими метками с последующей обработкой флуоресцентными антителами (косвенный метод).
- анализ упаковки хроматина - в оптическом микроскопе при окраске серебром на различных стадиях митоза видны основные структуры упаковки ДНК; по степени их повреждения судят о дозе облучения.
4. биофизические - представлены методом электронного парамагнитного резонанса - основной прямой метод обнаружения свободных радикалов.
г) расчетные - дозу излучения определяют путем математических вычислений; единственно возможный метод определения дозы от инкорпорированных радионуклидов.
Радиометрия - процесс измерения количества радиоактивных изотопови их концентрации в различных объектах. Методы радиометрии используются в дозиметрии для определения доз излучения.
В основу работы измерительных приборов положена количественная оценка физических явлений, сопровождающих взаимодействие излучений с веществом.
Регистрирующий излучение прибор обычно состоитиз трех основных частей:
1) детектора, датчика - чувствительного элемента, воспринимающего излучение, в который поступают частицы или кванты и с помощью преобразователя эффекта взаимодействия превращаются в электрические импульсы