Параметры и характеристики терморезисторов

Терморезисторы могут изготавливаться из собственных полупроводников с малой шириной запрещенной зоны ΔW или из примесных полупроводников с высокой температурой активации примеси Ts.

Основной характеристикой терморезистора является температурная зависимость его сопротивления R. Она совпадает с температурной зависимостью удельного сопротивления полупроводника ρ, из которого изготовлен терморезистор. Во всем диапазоне рабочих температур эта зависимость достаточно точно определяется соотношением

R = Rexp(B/T), (9)

где R¥ - коэффициент, зависящий от исходного материала и конструкции терморезистора, B – коэффициент температурной чувствительности, характеризующий физические свойства материала терморезистора. Его можно найти экспериментально

Параметры и характеристики терморезисторов - student2.ru К, (10)

измерив Rком – сопротивление терморезистора при комнатной температуре Тком и R1 – сопротивление при повышенной температуре Т1.

Рассчитав коэффициент температурной чувствительности, можно найти ширину запрещенной зоны собственного полупроводника из формул (9) и (7) с учетом, что R ~ ρ = 1/σ;

ΔW = 2kB, (11)

или примесного полупроводника n и р - типа из формул (9) и (8)

ΔWn = kBn,

ΔWр = kBр, (12)

где Bn, и Bр, ‑ коэффициенты температурной чувствительности полупроводников n- и р-типа.

Температурный коэффициент сопротивления терморезистора

Параметры и характеристики терморезисторов - student2.ru К−1. (13)

ТКRТ зависит от температуры, поэтому необходимо указывать температуру, при которой он получен (подстрочный индекс Т).

Зависимость ТКR=f(T) можно получить из (13) и (9):

ТКR= −В/T2, К−1. (14)

Параметры и характеристики терморезисторов - student2.ru Статическая вольт-амперная характеристика (ВАХ) терморезистора – это зависимость напряжения на терморезисторе от силы тока в условиях теплового равновесия между терморезистором и окружающей средой. На рис.4 показаны ВАХ терморезисторов с различными коэффициентами температурной чувствительности. Линейность ВАХ при малых токах и напряжениях связана с тем, что выделяемая в терморезисторе мощность недостаточна для существенного изменения его температуры. При увеличении тока, проходящего через терморезистор, выделяемая в нем мощность приводит к повышению температуры, росту концентрации свободных носителей заряда и уменьшению сопротивления. Линейность ВАХ нарушается. При дальнейшем увеличении тока и большой температурной чувствительности терморезистора может наблюдаться падающий участок ВАХ (участок с отрицательным дифференциальным сопротивлением).

Для каждой точки статической ВАХ терморезистора выполняется уравнение теплового баланса между мощностью электрического тока, выделяющейся в терморезисторе, и мощностью, которую он рассеивает в окружающую среду:

P = U 2/R = I 2R = H(T−Tокр), (15)

где Н [Вт/К]– коэффициент рассеяния терморезистора, численно равный мощности, которую нужно выделить в терморезисторе, чтобы его температура увеличилась на 1 К, Т – температура терморезистора, Tокр – температура окружающей среды.

Максимально допустимая температура терморезистора – это температура, при которой еще не происходит необратимых изменений параметров и характеристик терморезистора.

Максимально допустимая мощность рассеяния терморезистора Рmax – это мощность, при которой терморезистор, находящийся в спокойном воздухе при температуре 20ºС, разогревается при прохождении тока до максимально допустимой температуры.

Постоянная времени терморезистора t - это время, в течение которого превышение температуры терморезистора над температурой окружающей среды ΔT = (T−Tокр) уменьшится в е = 2,71 раз по отношению к начальной разности температур терморезистора и окружающей среды (T0−Tокр).

(T−Tокр) = (T0−Tокр) exp(−t/τ). (16)

Основное количество терморезисторов, выпускаемых промышленностью, изготовлено из оксидных полупроводников, а именно из оксидов металлов переходной группы Периодической системы элементов Д.И.Менделеева (от титана до цинка). Электропроводность оксидных полупроводников с преобладающей ионной связью отличается от электропроводности классических ковалентных полупроводников. Для металлов переходной группы характерны незаполненные электронные оболочки и переменная валентность. В результате электропроводность таких оксидов связана с обменом электронами между соседними ионами (“прыжковый” механизм). Энергия, необходимая для стимулирования такого обмена, экспоненциально уменьшается с увеличением температуры. Температурная зависимость сопротивления оксидного терморезистора аппроксимируется уравнением (9) для классических ковалентных полупроводников. Коэффициент температурной чувствительности В (10) отражает интенсивность обмена между соседними ионами, а ΔW – энергию обменной связи (11).

Наши рекомендации