Допущения о характере деформации
РАЗДЕЛ II. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
ЛЕКЦИЯ 18
Тема 2.1. Основные положения. Гипотезы и допущения
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях.
Знать основные понятия, гипотезы и допущения в сопротивлении материалов.
Сопротивление материалов»— это раздел «Технической механики», в котором излагаются теоретико-экспериментальные основы и методы расчета наиболее распространенных элементов конструкций на прочность, жесткость и устойчивость.
В сопротивлении материалов пользуются данными смежных дисциплин: физики, теоретической механики, материаловедения, математики и др. В свою очередь сопротивление материалов как наука является опорной базой для целого ряда технических дисциплин.
Любые создаваемые конструкции должны быть не только прочными и надежными, но и недорогими, простыми в изготовлении и обслуживании, с минимальным расходом материалов, труда и энергии.
Расчеты сопротивления материалов являются базовыми для обеспечения основных требований к деталям и конструкциям.
Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
Механические свойства материалов:
Прочность — способность не разрушаться под нагрузкой.
Жесткость — способность незначительно деформироваться под нагрузкой.
Выносливость — способность длительное время выдерживать переменные нагрузки.
Устойчивость — способность сохранять первоначальную форму упругого равновесия.
Вязкость — способность воспринимать ударные нагрузки.
Виды расчетов
Расчет на прочность обеспечивает неразрушение конструкции.
Расчет на жесткость обеспечивает деформации конструкции под нагрузкой в пределах допустимых норм.
Расчет на выносливость обеспечивает необходимую долговечность элементов конструкции.
Расчет на устойчивость обеспечивает сохранение необходимой формы равновесия и предотвращает внезапное искривление длинных стержней.
Для обеспечения прочности конструкций, работающих при ударных нагрузках (при ковке, штамповке и подобных случаях), проводятся расчеты на удар.
Основные гипотезы и допущения
Приступая к расчетам конструкции, следует решить, что в данном случае существенно, а что можно отбросить, т. к. решение технической задачи с полным учетом всех свойств реального объекта невозможно.
Допущения о свойствах материалов
Материалы однородные — в любой точке материалы имеют одинаковые физико-механические свойства.
Материалы представляют сплошную среду — кристаллическое строение и микроскопические дефекты не учитываются.
Материалы изотропны — механические свойства не зависят от направления нагружения.
Материалы обладают идеальной упругостью — полностью восстанавливают форму и размеры после снятия нагрузки.
В реальных материалах эти допущения выполняются лишь отчасти, но принятие таких допущений упрощает расчет. Все упрощения принято компенсировать, введя запас прочности.
Допущения о характере деформации
Все материалы под нагрузкой деформируются, т. е. меняют форму и размеры.
Характер деформации легко проследить при испытании материалов на растяжение.
Перед испытаниями цилиндрический образец закрепляется в захватах разрывной машины, растягивается и доводится до разрушения. При этом записывается зависимость между приложенным усилием и деформацией. Получают график, называемый диаграммой растяжения. Для примера на рис. 18.1 представлена диаграмма растяжения малоуглеродистой стали.
На диаграмме отмечают особые точки:
— от точки 0 до точки 1 — прямая линия (деформация прямо пропорциональна нагрузке);
— от точки 2 до точки 5 деформации быстро нарастают, и образец разрушается, разрушению предшествует появление утончения (шейки) в точке 4.
Если прервать испытания до точки 2, образец вернется к исходным размерам; эта область называется областью упругих деформаций. Упругие деформации полностью исчезают после снятия нагрузки.
При продолжении испытаний после точки 2 образец уже не возвращается к исходным размерам, деформации начинают накапливаться.
При выключении машины в точке А образец несколько сжимается по линии АВ, параллельной линии 01. Деформации после точки 2 называются пластическими, они полностью не исчезают; сохранившиеся деформации называются остаточными.
На участке 01 выполняется закон Гука:
В пределах упругости деформации прямо пропорциональны нагрузке.
Считают, что все материалы подчиняются закону Гука.
Поскольку упругие деформации малы по сравнению с геометрическими размерами детали, при расчетах считают, что размеры под нагрузкой не изменяются.
Расчеты ведут, используя принцип начальных размеров:
При работе конструкции деформации должны оставаться упругими.
К нарушению прочности следует относить и возникновение пластических деформаций. Хотя в практике бывают случаи, когда местные пластические деформации считаются допустимыми.