Потенциальная помехоустойчивость различных
Видов дискретной модуляции
1. Дискретная амплитудная модуляция.
S1(t) = A cos w0t , S2(t) = 0 , 0 < t < T;
Eэ = S21(t)dt = E1 (Eэ равна энергии первого сигнала);
Подставив эту величину в формулу (7.6), получим
(8.1)
2. Дискретная частотная модуляция.
S1(t) = A cos w1t ; S2(t) = A cos w2t , 0 < t < T.
Eэ = [S1(t) - S2(t)]2dt = S21(t)dt + 2 S1(t)S2(t)dt + S22(t)dt =
= E1 + 2TBS1S2(0) + E2.
При частотной модуляции сигналы S1(t) и S2(t) являются взаимоортогональными, поэтому их функция взаимной корреляции равна нулю. Кроме того, благодаря равной амплитуде сигналов S1(t) и S2(t) E1=E2. В результате Eэ = 2E1 , а
Подставив эту величину в формулу (7.6), получим
(8.2)
3. Дискретная фазовая модуляция
S1(t) = A cos w0t, S2(t) = - A cos w0t = - S1(t) , 0 < t < T;
[ Eэ =2S1(t)]2dt = 4E1,
Подставив эту величину в формулу (7.6), получим
(8.3)
Сравнивая между собой формулы (8.1), (8.2), (8.3), видим, что для достижения заданной вероятности ошибки при ДЧМ требуется величина h0 в больше, чем при ДФМ, а при ДАМ - в 2 раза больше, чем при ФМ. Отсюда видно, что переход от ДАМ к ДЧМ дает двухкратный выигрыш по мощности, а к ДФМ - четырехкратный выигрыш. Причину этого можно наглядно установить, рассматривая векторные диаграммы сигналов для разных видов модуляции.
Из рис. 8.1 видно, что при ДАМ расстояние между векторами сигналов S1 и S2 равно длине вектора S1, при ДЧМ (взаимоортогональные сигналы) это расстояние равно S1 , при ДФМ (противоположные сигналы) это расстояние равно 2S1. Энергия же пропорциональна квадрату разности сигналов.
Следует заметить, что приведенные здесь данные об энергетике сигналов ДАМ, ДЧМ и ДФМ относились к максимальным (пиковым) мощностям этих сигналов. В этом смысле, например, при переходе от ДЧМ к ДАМ мы имеем двухкратный выигрыш в пиковой мощности.
Однако, сигналы ДАМ имеют пассивную паузу (мощность сигнала в паузе равна нулю), поэтому по потребляемой передатчиком мощности, кроме отмеченного ранее проигрыша, имеется еще и двухкратный выигрыш. С учетом этого обстоятельства, при переходе от ДЧМ к ДАМ двухкратный проигрыш по пиковой мощности компенсируется двухкратным выигрышем за счет пассивной паузы сигналов ДАМ, в результате чего по потребляемой мощности эти сигналы оказываются равноценными. Однако следует помнить, что при ДАМ в приемнике Котельникова трудно установить необходимый порог в сравнивающем устройстве, а в приемнике ДЧМ регулировка порога не требуется. Поэтому частотная модуляция применяется чаще, чем амплитудная.
Отметим еще раз, что приемник Котельникова обеспечивает наибольшую предельно-допустимую (потенциальную) помехоустойчивость. Это достигается благодаря тому, что при приеме учитываются все параметры сигнала, не несущие информации: амплитуда, частота, фаза несущего колебания, а также длительность сигнала Т, так как интегрирование (фильтрация) осуществляется в течение этого времени. Решение о принятом сигнале обычно осуществляется в конце каждого интервала Т, для чего в приемнике должна иметься специальная система синхронизации элементов сигнала.
9.Оптимальная фильтрация дискретных сигналов
Оптимальный приемник (рис.6.1) является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого сигнала x(t) и ожидаемого Si(t), благодаря чему обеспечивается максимально - возможное отношение сигнал/шум h20..
Поскольку операция определения функции корреляции является линейной, ее можно реализовать в некотором линейном фильтре, характеристики которого (комплексная передаточная характеристика K(jw) и импульсная характеристика g(t) являются такими, что отношение сигнал/шум на его выходе получается максимальным, причем h2max = h20.
Найдем характеристики фильтра, когда помеха n(t) является флюктуационной со спектральной плотностью Gn(w) = N0,, w ³ 0.
Пусть сигнал на входе фильтра имеет комплексный спектр S(jw). Тогда сигнал на выходе фильтра y(t) можно определить с помощью преобразования Фурье
Нас интересуют значение y(t) в момент принятия решения (момент отсчета t0), поэтому, заменив t на t0, получим
(9.1)
Чтобы получить максимальную величину y(t0), нужно найти оптимальную характеристику фильтра k(jw). Для этой цели можно воспользоваться известным неравенством Шварца-Буняковского, имеющим вид
Легко проверить, что данное неравенство превращается в равенство при условии,что
где a - любая произвольная постоянная. В нашем случае, применительно к формуле (9.1), величина y(t0) будет максимальной при условии
(9.2)
(это уже есть условие оптимальности характеристики K(jw), поэтому здесь и в дальнейшем K(jw) заменено на Kopt(jw) ).
Подставляя в левую часть формулы (9.2)
(9.3)
(9.4)
получаем
или, сокращая на S(w), будем иметь
. (9.5)
Последнюю формулу можно представить в виде двух составляющих, позволяющих найти амплитудно-частотную характеристику оптимального фильтра Kopt(w) и фазо-частотную характеристику jk(w):
; (9.6)
(9.7)
откуда (9.8)
Здесь js(w) - фазо-частотный спектр входного сигнала; wt0 - "запаздывающий" множитель, учитывающий то, что "отсчет" величины сигнала на выходе фильтра производится в момент t0 , когда возникает максимум выходного сигнала фильтра.
Условие (9.6) имеет простой физический смысл: фильтр должен лучше пропускать составляющие спектра сигнала, имеющие большую амплитуду и в меньшей степени пропускать составляющие сигнала, имеющие меньшую амплитуду.
Условие (9.7) имеет также простой физический смысл: в момент отсчета (t0) все частотные составляющие спектра выходного сигнала имеют нулевую фазу, благодаря чему выходное напряжение в момент t0 имеет наибольшее отношение мощности сигнала к мощности помехи .
Условия (9.6) и (9.8) можно объединить в одно, представив передаточную характеристику в комплексной форме
(9.9)
Можно, наконец, последнюю формулу представить в следующем виде
(9.10)
Здесь S*(jw) - комплексно-сопряженный спектр по отношению к S(jw).
Отношение сигнал/помеха определяется , как обычно, формулой
(9.11)
где - мощность сигнала на выходе фильтра в момент t0 ;
(9.12)
мощность (дисперсия) помехи на выходе фильтра,
Dfopt - эффективная полоса пропускания оптимального фильтра.
Подставляя в (9.11) выражения (9.1) и (9.12) с учетом (9.2), получим
(9.13)
где энергия сигнала S(t) на входе фильтра.
Из (9.13) видно, что отношение h2(t0) численно равно отношению энергии сигнала к спектральной плотности помехи (как в приемнике Котельникова) и не зависит от формы сигнала. А так как энергия сигнала равна произведению мощности сигнала на его длительность, то для повышения помехоустойчивости систем связи с использованием согласованных фильтров можно увеличивать длительность элементарных сигналов, что и делается в широкополосных системах связи.
При применении в демодуляторе приемника согласованных фильтров в сочетании с когерентным способом приема можно добиться потенциальной помехоустойчивости.
Импульсная характеристика оптимального фильтра (отклик фильтра на дельта-функцию) определяется известным выражением
Подставив сюда значение Kopt(jw) из (9.10), получим
Интегрирование в последней формуле производится по всем частотам от -¥ до +¥; поэтому знак перед w в этой формуле можно заменить на противоположный, что не приведет к изменению результата вычисления интеграла. В результате получим
(9.14)
А так как, на основании преобразования Фурье
(9.15)
то, сравнивая (9.14) и (9.15), получаем
(9.16).
Таким образом, функция g(t) отличается от сигнала S(t) только постоянным множителем а , смещением на величину t0 и знаком аргумента t (то есть функция g(t) является зеркальным отображением сигнала S(t) , сдвинутым на величину t0 .
На рис. 9.2 в качестве примера приведен некоторый сигнал S(t), зеркально перевернутый сигнал S(- t) и функция g(t) = aS(t0 - t).
Как уже говорилось, величину t0 обычно берут равной длительности сигнала Т. Если взять t0 < T, то получается физически неосуществимая система (отклик начинается раньше поступления входного воздействия).
Сигнал y(t) на выходе линейной системы при поступлении на ее вход сигнала x(t) определяется известным интегралом Дюамеля
. (9.17)
Пусть на вход оптимального фильтра поступает аддитивная смесь, содержащая сигнал S(t) , с которым фильтр согласован, и помеха n(t) ( это может быть флюктуационная помеха или какой-нибудь детерминированный сигнал, с которым фильтр не согласован) x(t)=S(t)+n(t) ,
Подставляя x(t) и (9.16) в (9.17), получим
, (9.18)
заменяя t0 на Т, получим
(9.19)
Таким образом, на выходе согласованного фильтра получаем под действием сигнала функцию корреляции сигнала, а под действием помехи функцию взаимной корреляции сигнала и помехи. Если на входе фильтра только помеха(без сигнала), на выходе получаем только функцию взаимной корреляции помехи и сигнала, с которым фильтр согласован.
В формуле (9.19) а - любой произвольный множитель, поэтому произведение а Т можно заменить на произвольный множитель b. В момент времени t=T (момент отсчета) формула (9.19) дает
(9.20)
Примечание. Если на вход согласованного фильтра поступает флюктуационная помеха, то теоретически функция взаимной корреляции Bsn(0) должна быть равна нулю, так как сигнал и помеха являются независимыми функциями времени. Однако на практике Bsn¹ 0 , так как при вычислении функции взаимной корреляции требуется бесконечно большое время интегрирования. В нашем же случае интегрирование ведется за время, равное Т. Поэтому формулы (9.19) и (9.20) являются приближенными.
Результаты фильтрации не зависят от формы сигнала. Следовательно фильтр может быть применен и без детектора. Тогда оптимальный приемник полностью известных сигналов (рис. 6.1) может быть реализован в виде двух согласованных фильтров - СФ 1 , СФ 2 и устройства сравнения - УС (рис.9.3).
Примеры согласованных фильтров.
Рассмотрим согласованный фильтр для прямоугольного импульса длительности Т (рис 9.4 а).
Спектральная плотность такого импульса равна
.
Для согласованного фильтра, в соответствии с (9.10) для случая t0 = T
(9.21)
Пользуясь последним выражением, можно легко построить схему фильтра для данного случая. Так из теории электрических цепей известно, что деление на jw означает интегрирование сигнала, а множитель е-jwT означает задержку сигнала на время Т. В результате схема фильтра будет содержать интегратор, линию задержки и вычитатель (рис. 9.4).
Таким образом, на выходе фильтра получился треугольный импульс с основанием 2Т (это - функция корреляции входного импульса прямоугольной формы). То, что выходной импульс имеет в два раза большую длительность, чем входной, является недостатком оптимального фильтра, так как "хвост" выходного сигнала на отрезке времени от Т до 2Т будет накладываться на выходной сигнал следующего импульса. Поэтому на практике часто применяют упрощенную схему фильтра, содержащую интегриру ющую RC -цепь (RC>> T) и ключ К (рис. 9.5).
В момент T окончания входного импульса ключ К замыкается, конденсатор интегратора быстро разряжается через ключ и схема оказывается готовой к приему следующего импульса.
Оптимальный фильтр для приема радиоимпульсов с прямоугольной огибающей может быть построен аналогичным образом, однако RC - цепочка должна быть заменена колебательным контуром с достаточно высокой добротностью. Фильтры с ключами называются "кинематическими" фильтрами.