Одномерная цепочка с двумя атомами в примитивной ячейке
Исследуем теперь колебания цепочки, элементарная ячейка которой состоит из двух атомов с разными массами: M1 и M2, для определенности положим M1<M2. Период цепочки (расстояние между узлами ее решетки Браве) как и прежде обозначим через a (рис. 3). Для простоты будем считать, что ''пружинки'' соединяющие атомы имеют одинаковую жесткость γ.
Рис. 3. Одномерная цепочка с двумя атомами в примитивной ячейке и ее решетка Браве. |
Запишем закон Ньютона для двух атомов n-й ячейки:
(22) |
Здесь un и vn — смещения соответственно маленького и большого атома n-й ячейки из положения равновесия.
Будем, как и в случае цепочки с одним атомом в примитивной ячейке, искать решение в виде плоской гармонической волны:
(23) |
Амплитуды колебаний маленького и большого атомов A и B в общем случае разные как по абсолютной величине, так и по фазе.
После подстановки (23) в (22) получим линейную однородную систему уравнений для A и B:
–M1ω2A = γ(Beika+B–2A) –M2ω2B = γ(A+Ae–ika–2B) | (24) |
Перепишем ее в стандартном виде:
(25) |
Такая система имеет решения лишь в том случае, когда ее определитель равен нулю. Приравнивая нулю определитель (25) получим уравнение, связывающее ω и k, т. е. дисперсионное уравнение:
M1M2ω4 – 2γ(M1+M2)ω2+2γ2(1–cos ka) = 0 | (26) |
Это уравнение удобно переписать, использую приведенную массу атомов примитивной ячейки μ:
(27) |
(28) |
Его решения имеют вид:
(29) |
или
(30) |
Величина 4μ2/(M1M2) при любых M1, M2 не превосходит единицы, поэтому подкоренное выражение всегда неотрицательно.
Итак, для каждого волнового вектора k существуют две частоты ω, удовлетворяющие дисперсионному уравнению. Точнее, есть две непрерывные функции ω(k), которые отличаются знаком перед корнем. Говорят, что существуют две ветви колебаний.
Исследуем обе ветви.
Напомним, что волновые вектора, отличающиеся на вектор обратной решки, описывают одно и то же колебания. (Вследствие этого функция ω(k) периодична с периодом обратной решетки 2π/a, а в трехмерном случае обладает трансляционной симметрией обратной решетки). Поэтому мы считаем, что волновой вектор лежит в пределах первой зоны Бриллюэна: –π/a<k<π/a.
Решение со знаком ''минус''
В точке k = 0:
(31) |
На границе зоны Бриллюэна:
(32) |
При ka<< 1 (длинные волны):
ω2(k) | ≈ | ||
≈ | |||
= | |||
= | (33) |
другими словами
(34) |
Мы видим, что в длинноволновом пределе закон дисперсии этой ветви линеен, т. е., как и в случае цепочки с одним атомом в примитивной ячейке, описывает акустические колебания. По этой причине вся ветвь (решение со знаком ''–'') называется акустической (рис. 4).
Рис. 4. Закон дисперсии колебаний цепочки с двумя атомами в примитивной ячейке. |
Выражение для скорости звука имеет такой же вид, что и соответствующее выражение для цепочки с одним атомом в ячейке (20) и зависит от тех же макроскопических характеристик: линейной плотности и упругой постоянной цепочки:
(35) |
Линейная плотность двухатомной цепочки равна (M1+M2)/a, а упругая постоянная — γ· a/2 (т. к. длина одной пружинки в наших обозначениях равна a/2).
Это и неудивительно. Мы уже видели, изучая цепочку с одним атомом в примитивной ячейке, что длинноволновые акустические колебания можно получить, рассматривая цепочку, как непрерывную упругую среду. Атомы ячейки при таких колебаниях движутся вместе, как единое целое, поэтому структура примитивной ячейки не играет роли, а важны лишь макроскопические, усредненные характеристики цепочки.
То, что атомы ячейки при длинноволновых акустических колебаниях движутся вместе, можно получить и непосредственно, решив систему (25). Эта система разрешима, когда ее определитель равен нулю, а определитель равен нулю, когда ω и k связаны законом дисперсии. При этом уравнения системы уже не являются независимыми, и мы можем взять любое из них, чтобы найти отношение амплитуд A и B.
Из первого уравнения системы (25) получаем:
(36) |
откуда в пределе длинноволновых акустических колебаний (k→ 0, ω = s |k|→ 0) следует B/A→ 1, т. е. A = B: атомы движутся в фазе с одинаковыми амплитудами.
Рис. 5. Амплитуды атомов цепочки в случае длинноволновых акустических колебаний. |
Отметим также, что на границе зоны Бриллюэна групповая скорость ∂ω/∂ k равна нулю. Это утверждение справедливо для обеих ветвей колебаний.
Решение со знаком ''плюс''.
В точке k = 0:
(37) |
На границе зоны Бриллюэна:
(38) |
Групповая скорость этой ветви ∂ω/∂ k равна нулю как на границе зоны Бриллюэна, так и при k = 0.
Эта ветвь целиком лежит выше акустической ветви: ее минимальная частота больше максимальной частоты акустических колебаний . Таким образом, в цепочке могут распространяться волны в частотами от 0 до и от до . Интервал частот является ''запрещенной зоной'': волн с такими частотами не существует. Относительная ширина этого интервала тем больше, чем больше отношение масс M2/M1.
Чтобы понять, что представляют собой длинноволновые колебания этой ветви, найдем отношение амплитуд колебаний B/A при k = 0 с помощью (36):
(39) |
Мы видим, что атомы в каждой ячейке движутся в противофазе, то сближаясь, то удаляясь друг от друга, причем одновременно во всех ячейках (если k = 0). Амплитуда движения легкого атома больше амплитуды тяжелого в M2/M1 раз, т. е. центр тяжести ячейки остается на месте.
Рис. 6. Амплитуды атомов цепочки в случае длинноволновых оптических колебаний. |
Если атомы заряжены, то при колебаниях такого типа каждая ячейка представляет собой переменный дипольный момент. Дипольные моменты взаимодействуют с электромагнитным полем, и колебания легко возбуждаются электромагнитными волнами соответствующих частот. В связи с этим, вся ветвь колебаний называется оптической.
При длинноволновых акустических колебаниях атомы ячейки движутся в фазе и никакого дипольного момента не возникает. Поэтому акустические колебания с электромагнитным полем взаимодействуют слабо.
Энергия длинноволнового оптического фонона имеет тот же порядок величины, что и энергия фонона акустического колебания с максимальной частотой, которую мы оценили в 0.05 эВ. Энергии оптических фононов большинства полупроводниковых кристаллов лежат в диапазоне 0.03÷ 0.1 эВ.
Посмотрим теперь, как колеблются атомы, когда длина волны минимальна, т. е. когда волновой вектор лежит на границе зоны Бриллюэна.
В случае акустических колебаний ω2 = 2γ/M2, коэффициент при B во втором уравнении системы (25) обращается в ноль, откуда следует что A = 0.
В случае оптических колебаний ω2 = 2γ/M1, и из первого уравнения (25) следует что B = 0.
Таким образом, при k = π/a в случае акустических волн колеблются тяжелые атомы, а легкие неподвижны, в случае оптических, наоборот: колеблются легкие, тяжелые стоят на месте.
Обобщим теперь полученные результаты. Нетрудно показать, что если примитивная ячейка одномерной цепочки содержит l атомов, то спектр колебаний состоит из l ветвей, одна из которых акустическая, а остальные — оптические.
Мы рассматривали бесконечную цепочку, не накладывая никаких ограничений на длины волн упругих колебаний. В результате, мы пришли к выводу, что в цепочке могут распространяться колебания с любыми волновыми векторами, лежащими в первой зоне Бриллюэна. (Было показано, что из-за дискретности цепочки волновые вектора, отличающиеся на произвольный вектор обратной решетки, описывают одни и те же колебания. Поэтому можно брать волновой вектор из любой зоны Бриллюэна. Естественней всего описывать колебание наименьшим волновым вектором, т. е. вектором из первой зоны Бриллюна.)
Чтобы иметь дело не с непрерывным, а с дискретным набором волновых векторов, можно потребовать, чтобы отклонение атомов от равновесия было периодической функцией: u(xn) = u(xn+L). Иными словами — поставить граничные условия Борна-Кармана. Период L должен быть кратен постоянной решетки цепочки.
Условиям Борна-Кармана удовлетворяют только гармонические колебания с ''разрешенными'' волновыми векторами kn = 2π n/L. Нетрудно подсчитать, что в зоне Бриллюэна размещается L/a разрешенных волновых векторов, т. е. ровно столько, сколько примитивных ячеек укладывается на длине L. (Волновым векторам –π/a и π/a соответствует одно и то же колебание и поэтому считаем эти два значения за одно). Мы уже упоминали выше об этом свойстве зоны Бриллюэна.
Т. к. колебание однозначно определяется волновым вектором и ветвью, то различных колебаний столько, сколько атомов содержит цепочка. Это общее свойство линейных колебательных систем: количество независимых колебаний (нормальных мод) равно числу степеней свободы системы.
Трехмерный кристалл
Мы рассмотрели колебания в одномерной цепочке. Подобным образом могут быть описаны и колебания решетки трехмерного кристалла.
Предположим, что примитивная ячейка кристалла состоит из l атомов. Каждый атом ячейки будем обозначать индексом s, этот индекс принимает l различных значений. Любой атом кристалла однозначно определяется радиус-вектором , задающим положение ячейки (соответствующего узла решетки Браве), и индексом s, характеризующим положение атома внутри ячейки (тип атома).
Смещение атомов при колебаниях решетки является линейной комбинацией плоских гармонических волн (точнее, их вещественных частей):
(40) |
Частота колебаний одинакова для всех атомов кристалла. Амплитуда колебаний зависит от типа атома (индекса s), т. е. одинакова для всех однотипных атомов. Направление вектора амплитуды может, вообще говоря, быть каким угодно.
Индекс j обозначает ветвь колебаний. Волновой вектор и ветвь j однозначно определяют частоту и относительные амплитуды атомов всех типов. Для каждой ветви зависимости и являются непрерывными функциями.
Если примитивная ячейка кристалла содержит l атомов, то число ветвей равно 3l. Таким образом, каждому значению волнового вектора соответствуют 3l разных колебаний.
Три из этих ветвей — акустические, в предельном случае длинных волн их частота пропорциональна длине волнового вектора ω = s|k|. Однако скорость звука s зависит от направления распространения волны, т. е. от направления . В случае длинноволновых акустических колебаний амплитуды всех атомов примитивной ячейки примерно одинаковы.
Остальные 3l–3 ветвей — оптические, при их частота отлична от нуля.
По направлению амплитуды относительно волнового вектора акустические колебания можно разделить на продольное (LA) и два поперечных (TA). Строго говоря, смещения атомов при этих колебаниях параллельны или перпендикулярны вектору только при распространении волны в направлениях высокой симметрии, например [100] для кристаллов кубической сингонии. Как правило, скорость звука у продольного колебания больше чем у поперечных.
У кристаллов со структурой алмаза или цинковой обманки примитивная ячейка содержит 2 атома. Соответственно, кроме трех акустических, эти кристаллы обладают тремя оптическими ветвями колебаний, из которых также можно выделить продольную (LO) и две поперечных (TO) ветви.
Как и в одномерном случае, волновые вектора, отличающиеся друг от друга на вектор обратной решетки, соответствуют одному и тому же колебанию. По этой причине достаточно рассматривать волновые вектора, лежащие в первой зоне Бриллюэна.
Количество разрешенных волновых векторов в зоне Бриллюэна равно N = V/v0 — числу примитивных ячеек в нормировочном объеме кристалла V = L3 (v0 – объем примитивной ячейки). Действительно, плотность разрешенных волновых векторов в обратном пространстве равна V/(2π)3, т. е. в объеме обратного пространства Δ3k содержится Δ3k· V/(2π)3 разрешенных волновых векторов. Объем зоны Бриллюэна — объем примитивной ячейки обратной решетки — равен (2π)3/v0, и для числа разрешенных состояний получаем (2π)3/v0· V/(2π)3 = V/v0 = N.
Число ветвей — 3l, поэтому полное число колебаний равно 3lN — утроенному числу атомов кристалла в объеме L3, т. е. числу степеней свободы механической системы.
Фононы
Колебаниям решетки, согласно квантовой механике, можно сопоставить квазичастицы — фононы. Каждому колебанию соответствует одно состояние фонона с импульсом и энергией .
Фононы являются бозе-частицами: число фононов, соответствующих определенному колебанию (число фононов одном состоянии), может быть сколь угодно большим. В состоянии термодинамического равновесия среднее число фононов njk ветви j с волновым вектором зависит только от энергии фонона (частоты колебания):
(41) |
Здесь kB — постоянная Больцмана. С точки зрения квантовой (да и классической) механики, нормальные колебания решетки ведут себя как набор независимых гармонических осцилляторов. Роль координаты осциллятора играет при этом амплитуда колебания, число фононов является уровнем энергии осциллятора.
На каждое колебание приходится средняя энергия . Строго говоря, к этой энергии надо прибавить энергию основного состояния колебания (энергию нулевых колебаний): как и у обычного гармонического осциллятора она равна . Но энергией нулевых колебаний кристалл обладает всегда, и мы просто примем ее за начало отсчета.
При высоких температурах, kb T >> ħω, число фононов пропорционально температуре:
(42) |
Средняя энергия колебания при этом равна kbT. Это известный результат классической статистической механики для средней энергии гармонического осциллятора. Таким образом, пока температура превосходит энергию фонона, квантовые эффекты не играют роли.
Они играют существенную роль при низких температурах. Если kb T << ħω, то среднее число фононов экспоненциально мало:
(43) |
Можно сказать, что колебания, частота которых превосходит величину kbT/ħ, ''вымерзают''. Энергия колебания не может быть меньше энергии одного фонона ħωjk а энергия фонона много больше характерной тепловой энергии kBT, поэтому такие колебания практически не возбуждаются.