Позиционные и непозиционные системы счисления

Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимнооднозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

Системы счисления делятся на два класса позиционные и непозиционные. В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число. Простейшая, но абсолютно неудобная система счисления. Основана на единственной цифре – единице (палочке). Позволяет записывать только натуральные числа. Чтобы представить число в этой системе счисления нужно записать столько палочек, каково само число. Использовалась нецивилизованными племенами, потребности которых в счете, как правило, не выходили за рамки первого десятка. В Римской системе счисления с помощью семи цифр – I=1 , V=5 , X=10 , L=50 , C=100 , D=500 , M=1000 – можно весьма успешно и довольно выразительно представлять натуральные числа в диапазоне до нескольких тысяч.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. В вычислительной технике непозиционные системы не применяются, но продолжают ограниченно использоваться для указания порядковых числительных (часов, столетий, номеров съездов или конференций и т.п.).

Позиционная система счисления – система счисления, в которой вес цифры меняется с изменением положения цифры в числе, но при этом полностью определяется написанием цифры и местом, которое она занимает. В частности, это означает, что вес цифры не зависит от значений окружающих ее цифр. Такая система счисления основывается на том, что некоторое число n единиц ( основание системы счисления ) объединяются в одну единицу второго разряда, n единиц второго разряда объединяются в одну единицу третьего разряда и т. д. Основанием систем счисления может быть любое число, больше единицы. К числу таких систем относится современная десятичная система счисления ( с основанием n=10 ). В ней для обозначения первых десяти чисел служат цифры 0,1,…,9. Несмотря на кажущуюся естественность такой системы, она явилась результатом длительного исторического развития. Возникновение десятичной системы счисления связывают со счетом на пальцах. В отличии от непозиционной системы счисления, позиционная система счисления применяется в ЭВМ.

Двоичная система счисления в настоящий момент наиболее употребительная в информатике, вычислительной технике и смежных отраслях, использующая две цифры – 0 и 1. Для представления этих чисел в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины – потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 – высоким уровнем. Такой способ представления называется положительной логикой.

История развития двоичной системы счисления – одна из ярких страниц в истории арифметики. Официальное «рождение» двоичной арифметики связывают с именем Г. В. Лейбница, опубликовавшего статью, в которой были рассмотрены правила выполнения всех арифметических операций над двоичными числами. До начала тридцатых годов XX века двоичная система счисления оставалась вне поля зрения прикладной математики. Потребность в создании надежных и простых по конструкции счетных механических устройств и простота выполнения действий над двоичными числами привели к более глубокому и активному изучению особенностей двоичной системы как системы, пригодной для аппаратной реализации. Первые двоичные механические вычислительные машины были построены во Франции и Германии. Утверждение двоичной арифметики в качестве общепринятой основы при конструировании ЭВМ с программным управлением состоялось под несомненным влиянием работы А. Бекса, Х. Гольдстайна и Дж. Фон Неймана о проекте первой ЭВМ с хранимой в памяти программой, написанной в 1946 году. В этой работе наиболее аргументировано обоснованы причины отказа от десятичной арифметики и перехода к двоичной системе счисления как основе машинной арифметики.

Восьмеричная система счисленияиспользует восемь цифр – 0, 1, 2, 3, 4, 5, 6, и 7. Широко использовалась в программировании в 1950-70-ые гг. К настоящему времени практически полностью вытеснена шестнадцатеричной системой счисления, однако функции перевода числа из десятичной системы в восьмеричную и обратно сохраняются в микрокалькуляторах и многих языках программирования.

Десятеричная система счисленияиспользует десять обычных цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Существует массовое заблуждение, будто именно десятичная система счисления является наиболее употребительным способом записи чисел. Между тем, более внимательный анализ правил чтения и записи чисел приводит к другому выводу: система счисления, которой мы обычно пользуемся, фактически является двойной, так как имеет основания – 10 и 1000. В частности, в русском языке известны названия только для первых семи разрядов десятичной системы счисления ( 1 – единица, 10 – десяток, 100 – сотня, 1000 – тысяча, 10000 – тьма, 100000 – легион, 1000000 – миллион ), но предпоследние два из них (легион и тьма) давно вышли из употребления, а соседние с ними (миллион и тысяча) – названия классов, а не только разрядов. Итак, фактически в русском языке остались лишь два самостоятельных названия для десятичных разрядов: десяток и сотня. В других языках – аналогичная ситуация.

Шестнадцатеричная система счисленияиспользует шестнадцать цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 в их обычном смысле, а затем A=10, B=11 , C=12 , D=13 , E=14 , F=15 . Также использует символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. С другой стороны, в некоторых языках сохранились и следы использования этой системы счисления в прошлом. Например, в романских языках (испанском, французском и др.) числительные от 11 до 16 образуются по одному правилу, а от 17 до 19 – по другому. А в русском языке известен пуд, равный 16 килограммам.

Наши рекомендации