Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц.

проверка допустимости решения ЗЛП на основе заполненной симплекс-таблицы. В качестве признака допустимости решения ЗЛП выступает требование неотрицательности всех элементов второго столбца (коэффициентов Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru ) симплекс-таблицы (коэффициент Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru в расчёт не принимается).

Если данное требование не выполняется (т.е. среди коэффициентов Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru имеется хотя бы один отрицательный), то осуществляется замена базисных переменных на свободные в соответствии с алгоритмом, описанным в приложении 4 лабораторной работы №5. При этом если в ходе поиска допустимого решения возникнет ситуация, когда в симплекс-таблице один или несколько элементов второго столбца отрицательны, и хотя бы в одной строке, соответствующей одному из этих элементов, остальные элементы положительны, то это свидетельствует об отсутствии у ЗЛП допустимого решения.

Алгоритм поиска оптимального решения ЗЛП на основе симплекс-таблиц.

проверка данного допустимого решения на оптимальность. Признаком оптимальности решения ЗЛП является требование отрицательности всех элементов второй строки (коэффициентов rj) симплекс-таблицы (коэффициент Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru в расчёт не принимается). Если данное требование не выполняется (т.е. среди коэффициентов rj имеется хотя бы один положительный), то осуществляется замена базисных переменных на свободные в соответствии с алгоритмом, описанным в приложении 3 лабораторной работы №5, до тех пор, пока не будет получено единственное оптимальное решение. При этом искомыми оптимальными значениями переменных будут значения базисных переменных второго столбца конечной симплекс-таблицы, а минимальным значением целевой функции – значение Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru . В принципе, можно решать задачу получения оптимального решения и добиваясь положительности всех элементов второй строки, но в таком случае минимальным значением целевой функции будет значение Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru , взятое с отрицательным знаком.

При этом если в ходе поиска оптимального решения возникнет ситуация, когда во второй строке симплекс-таблицы один или несколько элементов равны нулю (коэффициенты rj), а все остальные отрицательны, то это свидетельствует о том, что данная ЗЛП имеет бесчисленное множество оптимальных решений.

Например, если коэффициент r2 = 0, то имеет место выражение для целевой функции Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru , где переменная x2, а, следовательно, и сама целевая функция могут принимать произвольное значение.

Если же в ходе поиска оптимального решения окажется, что во второй строке симплекс-таблицы один или несколько элементов положительны, а в столбце, соответствующем положительному элементу, остальные элементы (коэффициенты Алгоритм поиска допустимого решения ЗЛП на основе симплекс-таблиц. - student2.ru ) отрицательны, то это свидетельствует о том, что данная ЗЛП не имеетоптимального решения.

20. Алгоритм поиска оптимального решения ЗЛП на основе симплекс-таблиц.

Табличный симплекс-метод

Для упрощения процесса решения исходные данные задачи линейного программирования при решении ее симплекс методом записываются в специальные симплекс-таблицы. Поэтому одна из модификаций симплекс метода получила название табличный симплекс метод. Задача линейного программирования в каноническом виде:

F=a0,1x1+a0,2x2+...a0,nxn +b0 → max

a1,1x1+a1,2x2+...a1,nxn + xn+1=b1

a2,1x1+a2,2x2+...a2,nxn +xn+2 =b2

.......................................

am,1x1+am,2x2+...am,nxn+xn+m=bm

Исходная таблица для задачи имеет следующий вид:

  x1 x2 ... xn-1 xn b
F -a0,1 -a0,2 ... -a0,n-1 -a0,n -b0
xn+1 a1,1 a1,2 ... a1,n-1 a1,n b1
xn+2 a2,1 a2,2 ... a2,n-1 a2,n b2
... ... ... ... ... ... ...
xn+m am,1 am,2 ... am,n-1 am,n bm

x1, x2, xn - исходные переменные, xn+1, xn+2, xn+m - дополнительные переменные. Все дополнительные переменные мы приняли как базисные, а исходные переменные как небазисные(дополнительные записаны в первый столбец симплекс-таблицы а исходные в первую строку). При каждой итерации элементы симплекс-таблицы пересчитывают по определеннымправилам.

Алгоритм симплекс-метода.

Подготовительный этап

Приводим задачу ЛП к каноническому виду

F=a0,1x1+a0,2x2+...a0,nxn +b0 → max

a1,1x1+a1,2x2+...a1,nxn+xn+1=b1

a2,1x1+a2,2x2+...a2,nxn+xn+2=b2

.......................................

am,1x1+am,2x2+...am,nxn+xn+m=bm

В случае если в исходной задаче необходимо найти минимум - знаки коэффициентов целевой функции F меняются на противоположные a0,n=-a0,n. Знаки коэффициентов ограничивающих условий со знаком "≥" так же меняются на противоположные. В случае если условие содержит знак "≤" - коэффициенты запишутся без изменений.



Наши рекомендации