Нереверсивный магнитный пускатель

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Нереверсивный магнитный пускатель

Конструктивно нереверсивный магнитный пускатель представляет собой металли-

ческую коробку, внутри которой располагаются следующие аппараты и устройства:

1. контактор;

2. два тепловых реле;

3. кнопочный пост управления с двумя кнопками «Пуск» и «Стоп».

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Нереверсивный магнитный пускатель - student2.ru

Рис. 129. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

в схеме управления:

1. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

2. КК1, КК2 – размыкающие контакты тепловых реле;

3. КМ – катушка линейного контактора;

4. SB1 – кнопка «Пуск»;

5. SB2 – кнопка «Стоп»

5. Прочитать и объяснить работу принципиальной электрической схемы реверсивного магнитного пускателя;

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Реверсивный магнитный пускатель

Схема пускателя ( рис.130 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. реверс;

2. защиту электродвигателя.

Поэтому он имеет два реверсивных контактора: КМ1 «Вперёд», КМ2 «Назад» и три

кнопки : SB1 «Вперёд», SB2 «Назад» и SB3 «Стоп».

Нереверсивный магнитный пускатель - student2.ru

Рис. 130. Принципиальная электрическая схема реверсивного магнитного пускателя

6. Прочитать и объяснить работу контроллерной схемы управления 3-скоростным якорно-швартовным электроприводом;

Схема предназначена для управления электроприводом якорно-швартовного устройства с 3-скоростным асинхронным двигателем.

Основные сведения.

Якорно-швартовные устройства предназначены для перемещения якоря и швартовных канатов.

Число скоростей ЯШУ – 3 или 6. Для получения 3-х скоростей применяют асинхронный двигатель с короткозамкнутым ротором, 6-ти скоростей – асинхронный двигатель с фазным ротором.

В данной схеме применяется асинхронный двигатель с короткозамкнутым ротором и тремя обмотками на статоре. Способ регулирования скорости – изменением числа пар полюсов. Мощность электродвигателя – 20...25 кВт.

При подъёме ( спуске ) якоря используются только 1-я и 2-я скорости, при швартовных операциях – все 3.

Контроллерная схема управления 3-скоростным якорно-швартовным электроприводом изображена на рис. 12.6.

Нереверсивный магнитный пускатель - student2.ru

Рис. 12.6. Контроллерная схема управления 3-скоростным якорно-швартовным электроприводом

Основные элементы схемы

К основным элементам схемы относятся ( рис. 12.6 ):

1. QF – автоматический выключатель электродвигателя;

2. YB – тормозной электромагнит;

3. F1…F5 – нагревательные элементы тепловых реле;

4. ML1, ML2, ML3 – обмотки статора 1-й, 2-й и 3-й скоростей;

5. Т – понижающий трансформатор для питания цепей управления;

6. VD1, VD2 – диоды схемы выпрямления;

7. S3 – аварийная кнопка блокировки тепловой защиты обмоток 1-й и 2-й скоростей;

8. QF – катушка минимального расцепителя автоматического выключателя QF;

9. КМ1, КМ2 - контакторы 3-й скорости.

Особенность силовой части схемы состоит в том, что обмотки 1-й и 2-й скорости соединены последовательно, но при работе включаются поочерёдно. Такое соединение обеспечивает без обрывное переключение этих обмоток и защиту контактов Q10, Q11 и Q12 от обгорания.

Таблица переключения контактов контроллера – в нижнем правом углу рис. 1.

Как видно из таблицы, контроллер имеет 3 фиксированных положения в каждую сторону ( «травить» и «выбирать» ).

В промежуточном состоянии между положениями 2 и 3 рукоятка контроллера не фиксируется.

Контроллер имеет 10 главных контактов - Q3…Q12

и 2 вспомогательных - S1 и S2.

7. Прочитать и объяснить работу схемы пуска асинхронного двигателя переключением со звезды на треугольник;

Основные сведения

Пуск двигателя переключением со звезды на треугольник уменьшает пусковой ток в 3 раза. Поэтому этот способ пуска применяют для крупных асинхронных двигателей, прямое включение которых вызывают большие провалы напряжения судовой сети.

Недостатком способа является уменьшение пускового момента в 3 раза, поэтому его применяют в электроприводах, допускающих при пуске уменьшение рабочих парамет-

ров ( у компрессора – давления, у насоса – подачи и т. п. )

Схема пуска

Схема пуска асинхронного двигателя переключением со звезды на треугольник

приведена на рис. 120.

Нереверсивный магнитный пускатель - student2.ru

Рис. 120. Схема пуска асинхронного двигателя переключением со звезды на треугольник

Основные элементы схемы:

1. QS – рубильник;

2. QF - автоматический выключатель;

3. М - асинхронный электродвигатель ;

4. FU – предохранитель цепей управления;

5. SB1 – кнопка «Пуск»;

6. SВ2 - кнопка «Стоп»;

6. KТ - реле времени электромеханическое;

7. КМ1 – контактор нулевой точки «звезды»;

8. КМ2 – контактор «треугольника».

Выдержка времени электромеханического реле КТ начинается с момента подачи питания на катушку реле.

8. Прочитать и объяснить работу схемы автоматического пуска асинхронного электродвигателя в функции времени через пусковые резисторы в цепи обмотки статора;

Основные сведения

Пуск асинхронного двигателя через пусковые резисторы в цепи обмотки статора предназначен для уменьшения пусковых токов. При прямом пуске ( без резисторов ) пу-

сковой ток превышает номинальный в 4…7 раз, что вызывает большие провалы напряже-

ния судовой сети, а при частых пусках - перегревает обмотки статора и ротора.

Недостатком способа является уменьшение пускового момента вследствие умень-

шения напряжения на обмотке статора , поэтому его применяют в электроприводах, допу-

скающих при пуске уменьшение рабочих параметров ( у компрессора – давления, у насоса – подачи и т. п. )

Схема пуска

Схема автоматического пуска асинхронного электродвигателя в функции времени

через пусковые резисторы приведена на рис. 121.

Нереверсивный магнитный пускатель - student2.ru

Рис. 121. Схема автоматического пуска асинхронного электродвигателя в функции времени через пусковые резисторы в цепи обмотки статора

На рис. 121 приняты такие обозначения:

1. А, В, С – линейные провода;

2. КМ1.1…КМ1.3 – главные контакты линейного контактора КМ1;

3. R Нереверсивный магнитный пускатель - student2.ru - пусковые резисторы ( 3 шт., по одному в каждом линейном проводе );

4. SB1, SB2 – кнопки соответственно «Пуск» и «Стоп»;

5. КМ1 – линейный контактор;

6. КМ2 – контактор ускорения;

7. КТ – электромагнитное реле времени ( с демпфером );

8. UZ – выпрямительный мостик ( мостик Греца ).

9. Прочитать и объяснить работу схемы автоматического пуска асинхронного электродвигателя в функции времени через пусковые резисторы в цепи обмотки ротора;

Пуск асинхронного двигателя через пусковые резисторы в цепи обмотки ротора предназначен для уменьшения пусковых токов. При прямом пуске ( без резисторов ) пу-

сковой ток превышает номинальный в 4…7 раз, что вызывает большие провалы напряже-

ния судовой сети, а при частых пусках - перегревает обмотки статора и ротора. Поскольку при пуске в ротор вводятся резисторы с большим активным сопротивлетием, ток ротора получается практически активным, что увеличивает пусковой момент двигателя до необходимого значения.

На судах асинхронные двигатели с фазным ротором нашли ограниченное примене

ние, в основном, в электроприводах грузовых кранов и якорно-швартовных устройст ( бра

шпилей ).

Схема автоматического пуска асинхронного электродвигателя в функции времени

через пусковые резисторы приведена на рис. 122.

Нереверсивный магнитный пускатель - student2.ru

Рис. 122. Схема автоматического пуска асинхронного электродвигателя в функции времени через пусковые резисторы в цепи обмотки ротора

На рис. 122 приняты такие обозначения:

1. QF – автоматический выулючатель;

2. КМ – линейный контактор;

3. КМ1, КМ» и КМ3 – контакторы ускорения;

4. SB1 – кнопка «Пуск»;

5. SB2 – кнопка «Стоп»;

6. R Нереверсивный магнитный пускатель - student2.ru , R Нереверсивный магнитный пускатель - student2.ru и R Нереверсивный магнитный пускатель - student2.ru - пусковые резисторы в цепи ротора.

Особенность схемы состоит в том, что для обеспечения выдержки времени к контакторам пристроены маятниковые реле времени.

10. Прочитать и объяснить работу схемы пуска асинхронного двигателя с фазным ротором;

Асинхронные двигатели с фазным ротором пускают в ход с помощью резисторов, включаемых в цепь ротора, что позволяет уменьшить пусковой ток и увеличить пусковой момент двигателя ( рис. 9.17 )..

Нереверсивный магнитный пускатель - student2.ru

Рис. 9.17. Схема пуска асинхронного двигателя с фазным ротором

11. Прочитать и объяснить работу схемы электропривода брашпиля по системе Г – Д;

Системой генератор-двигатель ( Г-Д ) называют систему, в которой исполнитель-

ный двигатель, приводящий в движение механизм, питается от отдельного генератора, а не от судовой сети.

Сам генератор приводится в движение дизелем ( на электроходах ) или асинхрон-

ным электродвигателем ПД ( в данной схеме ).

Система Г-Д имеет низкий коэффициент полезного действия – 30 - 40%, что объяс-

няется трёхкратным преобразование энергии. В данной схеме такое преобразование проис

ходит:

  1. в приводном асинхронном двигателе ПД, в котором электроэнергия судовой сети преобразуется в механическую на валу двигателя;
  2. в генераторе Г, в котором механическая энергия приводного двигателя ПД преобразуется в электрическую самого генератора;
  3. в исполнительных двигателях 1ИД, 2ИД, в которых электрическая энергия, получа-

емая от генератора Г, преобразуется в механическую на их валах.

Однако система Г-Д позволяет плавно и в широких пределах регулировать скорость

исполнительного двигателя, чего нельзя достигнуть иными способами регулирования скорости. Поэтому она до сих пор широко применяется на судах.

В этой системе обмотки якорей генератора Г и исполнительных двигателей 1ИД и 2ИД соединены последовательно ( они обтекаются одинаковым током ), что позволило создать простую и эффективную защиту от токов перегрузки при помощи последователь

ной противокомпаундной обмотки ( ПКО ) генератора ( см. ниже ).

Рис. 103. Схема управления 3-фазного асинхронного двигателя с одного ( а ) и двух ( б ) постов управления

Элементы схемы

Силовая часть:

1. А, В, С – линейные провода;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. М – обмотка статора 3-фазного асинхронного двигателя

Схема управления:

1. SB1 – контакты кнопки «Пуск»;

2. SB2 – контакты кнопки «Стоп»;

3. КМ4 – вспомогательный контакт контактора КМ.

18. Прочитать и объяснить работу структурной схемы авторулевого;

Отклонение судна от заданного курса воспринимается гирокомпасом ГК (рис. 10.32 ), который через датчик повернет ротор сельсина-приемника курса СП.

Последний через необратимую передачу НП поворачивает вал механического дифференциала МД. На второй вал механического дифференциала от штурвала подает-

ся заданное значение курса α Нереверсивный магнитный пускатель - student2.ru . На выходном (третьем) валу МД получается разность между заданным и истинным значениями курса, которая характеризуется углом откло-

нения отзаданного курса α.

Нереверсивный магнитный пускатель - student2.ru

Рис. 10.32. Структурная схема авторулевого

19. Прочитать и объяснить работу обобщенной разомкнутой системы ручного управления РЭГ-приводом;

Изменение направления подачи масла от насоса на рулевую машину, необходимое для перекладки руля, производится специальным управляющим устройством – сервомеханизмом.

В РЭГ-приводах с насосами постоянной подачи оконеч­ный каскад сервомеханизма представляет собой дросселирующий золот­ник, посредством которого насос связывается с рулевой машиной. Уп­равление золотником осуществляется магнитным (соленоид) или ма­шинным серводвигателем, который воздействует на золотник непосред­ственно или через промежуточный гидроусилитель.

В приводах с насосами переменной подачи сервомеханизм включает в себя электрический двигатель - серводвигатель, связанный через кинематическую передачу с манипулятором насоса.

Весьма часто в со­став управляющей кинематики включают гидроусилитель, что сущест­венно снижает мощность электрического серводвигателя.

Напомним, что при простом управления в качестве органов управления используют кнопки «Лево руля», «право руля» или рычаг управления ( «джостик» ).

Руль перекладывается все то время, пока нажата одна из кнопок или рычаг вы

веден из нейтрального положения. Перекладка пре­кращается, если отпустить кнопку или вернуть рукоятку поста в исходное - нулевое по­ложение.

Об угловом состоянии руля в каждый момент времени судят по рулевому указателю - аксиометру.

Обобщенная разомкнутая схема ручного управления рулем по времени показана на рис. 10.17.

Здесь представлены: РМ - рулевая ма­шина; Н - насос переменной подачи (ГЗ - гидрозолотник в системе управления с насосом нерегулируемой подачи); ГУ – гидроусили

тель; СР - серводвигатель; У - электрический усилитель.

Нереверсивный магнитный пускатель - student2.ru

Рис. 10.17. Обобщенная разомкнутая система ручного управления РЭГ-приводом

20. Прочитать и объяснить работу структурной схемы следящего управления РЭГ-приводом с механической обратной связью;

Изменение направления подачи масла от насоса на рулевую машину, необходимое для перекладки руля, производится специальным управляющим устройством – сервомеханизмом.

В РЭГ-приводах с насосами постоянной подачи оконеч­ный каскад сервомеханизма представляет собой дросселирующий золот­ник, посредством которого насос связывается с рулевой машиной. Уп­равление золотником осуществляется магнитным (соленоид) или ма­шинным серводвигателем, который воздействует на золотник непосред­ственно или через промежуточный гидроусилитель.

В приводах с насосами переменной подачи сервомеханизм включает в себя электрический двигатель - серводвигатель, связанный через кинематическую передачу с манипулятором насоса.

Весьма часто в со­став управляющей кинематики включают гидроусилитель, что сущест­венно снижает мощность электрического серводвигателя.

Напомним, что при следящем управления в качестве органа управления используют штурвал поста управления в рулевой рубке.

При повороте штурвала на определенный угол в необходимую сторону ( влево или вправо относительно нулевого положения ) перо руля повернется на такой же ( или пропорциональный ) угол и автоматически остановится.

Иначе говоря, перо руля повторяет поворот штурвала, как бы следит за движением штурвала, отсюда название – следящее управление.

При этом угол поворота пера руля тем больше, чем больше угловое расстояние ( угловой путь ) , описанное штурвалом, отсюда второе название – управление по пути.

Из сказанного следует, что у каждому положению штурвала после отработки соответствует определен­ное положение руля.

Таким образом, следящее управление является полуавтоматическим – на первом этапе управления участвует человек ( поворачивает вручную штурвал ), на втором этапе используются элементы автоматики ( сельсин-датчик руля в румпельном отделении ), обеспечивающие автоматическую ( без участия человека ) остановку руля.

Аксиометр является средством дополнительного контроля положения руля.

Система следящего управления может быть создана путем замыкания входа и выхода разомкнутой системы (рис. 10.16 ) через соответству­ющие преобразующие устройства.

Внутри следящего контура оказываются последовательно включенными два интегрирующих звена СР и РМ. Такие системы являются структурно неустойчивыми. Для прида­ния устойчивости одно из интегрирующих звеньев должно быть охва­чено жесткой обратной связью.

Широко распространены схемы (рис. 10.18 ), где обратной связью ох­вачены два звена: рулевая машина РМ и насос регулируемой подачи.

Нереверсивный магнитный пускатель - student2.ru

Рис. 10.18. Структурная схема следящего управления РЭГ-приводом с механической обратной связью

21. Прочитать и объяснить работу функциональной схемы электропривода подруливающего устройства с ВРШ;

К основным деталям устройства относятся ( рис. 10.34 ):

Нереверсивный магнитный пускатель - student2.ru

Рис. 10.34. Функциональная схема электропривода подруливающего устрой-

ства с ВРШ

ЛПШ – линейный преобразователь шага, для преобразования угла поворота лопастей винта в пропорциональное напряжение ;

ДНШ – датчик нулевого шага, представляет собой конечный выключатель, контакты которого замкнуты только при нулевом шаге лопастей винта;

М – приводной электродвигатель винта, для вращения винта;

ПП – переключатель постов управления;

ПУ1- пост управления на крыле левого борта;

ПУ2 – то же, в рулевой рубке;

ПУ3- то же, на крыле левого борта;

ПУ0 – то же, в ЦПУ;

РУ – распределительное устройство ( щит электропитания );

РШ – регулятор шага винта, для выработки напряжения, ;

ЭГП – электрогидравлический преобразователь;

РЗ – распределительный золотник;

1 – рычаг, для передачи информации о положении лопастей в ЛПШ и ДНШ;

2 – сервомотор, для создания усилия, поворачивающего лопасти винта;

3 – шток сервомотора, для передачи усилия от поршня сервомотора 2 к кондуктору 5;

4 – коническая зубчатая передача, для передачи вращающего момента электродвигателя на ступицу винта ( т.е. для вращения винта );

5 – кондуктор, устройство для непосредственного разворота лопастей винта.

22. Прочитать и объяснить нагрузочные диаграммы электропривода брашпиля при подъеме одного ( а ) и двух ( б ) якорей;

Нагрузочной диаграммой электропривода называют зависимость мощности, тока или момента электродвигателя от времени. Нагрузочная диаграмма электропривода брашпиля – это зависимость момента на валу электродвигателя от времени ( рис. 12.4 ). Рассмотрим нагрузочные диаграммы электропривода брашпиля при подъеме 1-го якоря с полной расчётной глубины стоянки ( рис. 12.5,а ) и 2-х якорей с половинной расчётной глубины ( рис. 12.5, б ).

Режим подъёма одного якоря.

При стоянке судна на якоре один конец якорной цепи с якорем лежит на грунте, а

второй проходит через клюз и якорную звёздочку в цепной ящик. Провисающая в воде часть цепи “а” находится под действием внешних сил, действующих на судно: силы ветра F Нереверсивный магнитный пускатель - student2.ru и силы течения воды Fт. Чем больше эти силы, тем сильнее натянута якорная цепь.

Увеличение натяжения цепи вызывает подъём части цепи с грунта, при этом увеличивается длина её провисающей части. Процесс снятия судна с якоря делится на 4 стадии ( рис. 12.4 ).

Нереверсивный магнитный пускатель - student2.ru

Рис.12.4. Процесс снятия судна с якоря

В стадии 1 брашпиль выбирает цепь, втягивая её звенья в клюз. При этом судно

под действием усилия в цепи, созданного работой электродвигателя брашпиля, движется с небольшой скоростью к месту залегания якоря. Количество звеньев, втягиваемых в клюз, равно количеству звеньев, поднятых с грунта, поэтому форма провисающей части цепи «б» не изменяется. Значит, сила натяжения цепи у входа в клюз и момент М Нереверсивный магнитный пускатель - student2.ru на валу электродвигателя на этой стадии не изменяются ( рис. 12.5, а ).

Стадия 1 заканчивается, когда с грунта будет поднято последнее свободно лежащее звено цепи. На этой стадии скорость выбирания якоря увеличивается, как правило, от 9 до 12 м / мин.

Нереверсивный магнитный пускатель - student2.ru

Рис. 12.5. Нагрузочные диаграммы электропривода брашпиля при подъеме одного ( а ) и двух ( б ) якорей

23. Прочитать и объяснить нагрузочную диаграмму электропривода при работе одной лебедки;

Электроприводы ГПМ работают в повторно-кратковременном режиме, который в

соответствии с международной классификацией обозначается S3.

Этот режим характеризуется частыми пусками и остановками электродвигателя ГПМ. В общем виде цикл работы грузовой лебедки состоит из следующих 8 операций:

1. подъем груза; 2. перенос груза в горизонталь­ной плоскости; 3. опускание груза;

4. расстропка груза; 5. подъем холосто­го гака; 6. обратное перемещение гака в горизонтальной плоскости; 7. опускание холостого гака; 8. застропка груза.

Грузовые операции могут осуществляться одной лебедкой, двумя лебедками или грузо­вым краном.

Для обоснованного выбора режима эксплуатации ЭП, а также для выбора ЭД по мощности необходимо прежде всего знать, как изменяется нагрузка на валу ЭД во вре-

мени. С этой целью используют нагрузочные диаграммы, представляющие собой зависимость момента на валу двигателя от времени, т.е. М ( t ).

Элементы схемы

На схеме компрессора показаны:

1. электромагнитный клапан ЭМ1 ( YV1 ), соединяющий нагнетательную по-

лость 1( рис. 11.9, а ) с атмосферой, при этом воздух стравливается непосредственно в МО.

Предназначен для разгрузки компрессора. В ходовом режиме включается редко, только при пуске компрессора, в режиме манёвров включается часто;

2. электромагнитные клапана ЭМ2 (YV2 ) и ЭМ3 (YV3), соединяющие цилинд-

ры низкого и высокого давления 2 и 3 ( рис. 11.9, а ) с атмосферой. Предназначены для продувки цилиндров. Если клапана включены, продувочные отверстия закрыты, и наобо-

рот.

В ходовом режиме клапана постоянно закрыты, продувка невозможна. Это являет-

ся серьёзным недостатком схемы управления.

В режиме манёвров, когда двигатель работает непрерывно, клапана периодически открываются. При этом очищаются цилиндры, а двигатель частично разгружается;

3. электромагнитный клапан ЭМ4 (YV4 ) для доступа охлаждающей воды к на-

гретым частям компрессора;

4. переключатели SA1 и SA2 для выбора необходимого режима работы. Пере-

ключатель SA1 расположен рядом с компрессором , переключатель SA2 находится в ЦПУ;

5. аварийный выключатель SA3 для остановки компрессора; находится рядом с

компрессором;

6. реле давления воздуха SP1 для управления работой компрессора в ходовом

режиме ; его контакт замыкается при понижении давления воздуха до 26 at и размыкается при повышении давления до 30 at;

7. реле давления воздуха SP1' для управления работой компрессора в режиме

манёвров; его контакт замыкается при повышении давления воздуха до 32 кгс at и размы-

кается при понижении давления до 28 at;

8. аварийный датчик температуры охлаждающей воды SК; установлен на выхо

де воды из компрессора, При повышении температуры до 60º С переключает свой кон-

такт в нижнее положение, при этом отключается двигатель компрессора и включается сигнализация;

9. аварийный датчик давления охлаждающей воды SР2; при понижении давле-

ния до 0,8 at переключает свой контакт в верхнее положение, при этом отключается двига

тель компрессора и включается сигнализация;

10. аварийный датчик давления масла SР3, при понижении давления масла до 0,6

at переключает свой контакт в верхнее положение, при этом отключается двигатель компрессора и включается сигнализация;

11. промежуточное реле KV1 для управления продувкой цилиндров в режиме

манёвров; при повышении давления воздуха до 32 at контакт реле давления SP1' замыкает

ся и включает это реле;

12. реле времени КТ1 с выдержкой в 10 с для контроля времени разгрузки ком-

прессора в режиме манёвров; при повышении давления воздуха до 32 at контакт реле дав-

ления SP1' замыкается и включает это реле;

13. сигнальные реле КV6, KV5 и KV4, включаются при критических значениях

соответственно температуры и давления охлаждающей воды, а также давления масла;

14. сигнальное реле KV2 «работа», включается после окончания пуска компресс-

сора;

15. реле времени КТ2 с выдержкой времени 6 с, для управления продолжитель-

ностью разгрузки компрессора в ходовом режиме;

16. реле времени КТ3, с выдержкой времени 8 с, для блокировки отключения

компрессора во время пуска при кратковременном понижении давления воды и масла;

17. разгрузочное реле KV3 для непосредственного управления разгрузочным

клапаном YV1; в ходовом режиме включается через контакты реле времени КТ2, в режиме манёвров – через контакты реле времени КТ1.

28. Прочитать и объяснить работу принципиальной схемы дизельной электрической уста­новки (ДГЭУ) на постоянном токе;

Пример принципиальной схемы дизельной электрической уста­новки (ДГЭУ) на постоянном токе показан на рис. 14.2.

Нереверсивный магнитный пускатель - student2.ru

Рис. 14.2. Принципиальная схема дизельной электрической уста­новки на постоянном токе

Подобные . схемы используются на буксирах, судах ледового плавания и ледоко-

лах

Основные элементы установки:

1. первичный двигатель ПД, частота вращения которого поддерживается постоянной регуля­тором Р, изменяющим расход топлива;

2. генератор постоянного тока Г с двумя обмотками возбуждения;

3. гребной двигатель Д;

4. возбудительный агрегат, состоящий из асинхронного приводного двигателя АД, возбудителя генератора ВГ и возбудителя двига­теля ВД;

5. : пост управления ПУ, расположенный в ходовой рубке или ЦПУ.

29. Прочитать и объяснить работу принципиальной схемы одновальной ТГЭУ на переменном токе;

Принципиальная схема возможного варианта одновальной турбоэлектрической установки на переменном токе, показанная в качестве примера на рис. 14.5, имеет две турбины Т1 и Т2 с регуляторами Р1 и Р2, дистанционно связанными с постом управления ПУ, с которого осуществляет ся плавное изменение частоты вращения гребного синхронного двигателя Д и винта В.

Возбудительный агрегат ВГ- АД -ВД с зависимым параллельным включением обмоток возбудителей генераторов ОВГ и двигателя ОВД обеспечивает регулируемое возбуждение этих машин. Автоматы А и переключа­тель П предназначены со ответственно для включения генераторов Г1 и Г2 и переключения следова­ния фаз(реверса) гребного двигателя Д.

Нереверсивный магнитный пускатель - student2.ru

Рис. 14.5. Принципиальная одновальная ТГЭУ на переменном токе

30. Прочитать и объяснить работу структурной схемы ГЭУ двойного рода тока;

Структурная схема гребной электроустановки двойного рода тока с неуправляе-

мым выпрямителем в виде одного из возможных вариантов представлена на рис. 14.6.

Нереверсивный магнитный пускатель - student2.ru

Рис. 14.6. Структурная схема ГЭУ двойного рода тока

Синхронный генератор СГ, питающий гребной электродвига­тель постоянного тока ГЭД независимого возбуждения, вращается первичным двигателем ПД с постоянной частотой ω.

Гребной элек­тродвигатель ГЭД постоянного тока подключается к синхрон­ному ге

нератору через неуправляемый выпрямитель НВ.

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Нереверсивный магнитный пускатель

Конструктивно нереверсивный магнитный пускатель представляет собой металли-

ческую коробку, внутри которой располагаются следующие аппараты и устройства:

1. контактор;

2. два тепловых реле;

3. кнопочный пост управления с двумя кнопками «Пуск» и «Стоп».

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Нереверсивный магнитный пускатель - student2.ru

Рис. 129. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

в схеме управления:

1. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

2. КК1, КК2 – размыкающие контакты тепловых реле;

3. КМ – катушка линейного контактора;

4. SB1 – кнопка «Пуск»;

5. SB2 – кнопка «Стоп»

5. Прочитать и объяснить работу принципиальной электрической схемы реверсивного магнитного пускателя;

Основные сведения

Магнитный пускатель – это комплектный аппарат, предназначенный для дистанци-

онного управления электродвигателями и их защиты.

Наши рекомендации