Условия равновесия для произвольной простр.системы сил, а также следствия из этих уравнений.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

åFkх=0 åFkу=0 åFkz=0 åМх(Fk)=0 åМу(Fk)=0 åМz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы Î пл-ти хоу, тогда: åFkх=0 åFkу=0 åМо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы ôô оси оу, тогда åFkх=0 åМо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn ôô оси оz, тогда: åFkz=0 åМх(Fk)=0 åМу(Fk)=0

Вторая форма условия равновесия для пороизвольной плоской системы сил:

åМА(Fk)=0 åМВ(Fk)=0 åМС(Fk)=0 – причем т.А, т,В, т.С Ï одной прямой.

- Докажем необходимость этих условий:

Допустим, система сил нах-ся в равновесии. Тогда очевидно, что å моментов всех сил относительно любой точки пл-ти=0, т.е. выполняются эти 3 условия.

- Докажем достаточность этих условий:

Доказать достоточность – это значит доказать, что при выполнении этих усл-й система нах-ся в равновесии. Доказывать будем методом от противного, поэтому предположим, что эти усл-я выполняются, но система не нах-ся в равновесии, т.е. существует R*¹0 эквив.данной сист.сил.

Рассмотрим усл-е первое и 2-е: для того, чтобы они выполнялись необходимо, чтобы R* проходил через т.А и т.В. Согласно третьему условию hR=0. Поскольку т.С Ï прямой АВ это может выполняться только в случае R*=0, т.е. наше предположение не верно и система действительно нах-ся в равновесии.

Третья форма усл-я равновесия для произвольной плоской системы сил.

åFkz=0 åМА(Fk)=0 åМВ(Fk)=0 – причем ось ох не перпендикулярна АВ.

- Необходимость этого усл-я очевидна, т.к.если система нах-ся в равновесии, то главный вектор и главный момент =0 относительно любой точки.

- Докажем достаточность этих условий:

Предположим, что система не нах-ся в равновесии и сущ-ет, т.е. сущ-ет R* и R* ¹0 является равнодействующей данной системы сил. Для того, чтобы выполнялось усл-е 2 и 3 необходимо, чтобы R* проходил через АВ.

Потребуем выполнения усл-я R*cosa=0, поскольку х не перпендикулярна АВ , то R* должно быть равно 0, т.о. мы доказали, что эти усл-я достаточны для того чтобы система находилась в равновесии.

На основании двух изложенных форм ур-й равновесия для плоской системы параллельных сил можно записать еще один вид ур-я равновесия для плоской системы параллельных сил:

åМА(Fk)=0 åМВ(Fk)=0, АВ не параллельна F1, F2, F3,…,Fn

Билет №14.

  1. Определение скоростей точек плоской фигуры с помощью МЦС.
  2. Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.

Опред. v 2-х точек с пом. МЦС.

Зная положение МЦС и скорость какой-либо точки фигуры, можно найти скорости всех точек плоской фигуры. Пусть P – МЦС и известна скорость какой-либо точки фигуры vА, тогда ω= vА/AP. vB= vАPB/PA. Соединив конец вектора vB с точкой Р, получим распределение скоростей вдоль отрезка РВ.

Теорема Вариньона.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F1, F2,…,Fn) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

MO(R)=rxR=rx∑Fi=∑(rxFi)= ∑MOi(Fi).

Ч. т. д..

Билет №15.

  1. Мгновенный центр ускорений. Частные случаи.
  2. Лемма о параллельном переносе силы.

МЦУ. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

aQ=aA+aAQ=0. Угол между aQA и QA tgα=aBAτ/aBAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4 Þ

1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к aA отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F’ и F”.

|F|=|F’|=|F”|. F~(F,F’,F”), т.к. (F’,F”) ~ 0, то

F ~(F,F’,F”) ~ (F,F’,F”) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F~ (F’,M(F,F”))

Ч. т. д.

Билет №16.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Аналитическое выражение для моментов силы относительно осей координат.

Наши рекомендации