Теорема об изменении момента количества движения материальной системы.
- момент количества движения матер. точки относительно центра О. – производная по времени от момента количества движения матер. точки относительно какого-либо центра равна моменту силы, приложенной к точке, относительно того же центра. Проектируя векторное равенство на оси координат. получаем три скалярных уравнения: и т.д. - производная от момента кол-ва движения матер. точки относительно какой-либо оси равна моменту силы, приложенной к точке, относительно той же оси. При действии центральной силы, проходящей через О, МО= 0, Þ =const. =const, где – секторная скорость. Под действием центральной силы точка движется по плоской кривой с постоянной секторной скоростью, т.е. радиус-вектор точки описывает равные площади в любые равные промежутки времени (закон площадей) Этот закон имеет место при движении планет и спутников – один из законов Кеплера.
Динамика вращательного движения вокруг неподвижной оси.
Пусть твёрдое тело вращается относительно неподвижной оси. Тогда уравнения движения значительно упрощаются. Действительно:1) - кинетический момент. Во вращательном движении , поэтому . Но из .
,где - момент инерции относительно оси вращения Z. Уравнение движения: окончательно, . 2) Кинетическая энергия: .Итак, . Моменты инерции некоторых тел:
1 Тонкий прямой стержень . 2.Тонкое кольцо (обод) 3. Сплошной диск
Таким образом, при вращательном движении твёрдого тела удобно пользоваться соотношениями теоремы об изменении кинетического момента системы.
Работа и мощность.
Элементарная работа dA = Ftds, Ft – проекция силы на касательную к траектории, направленная в сторону перемещения, или dA = Fdscosa. Если a – острый, то dA>0, тупой – <0, a=90o: dA=0. dA= – скалярное произведение вектора силы на вектор элементарного перемещения точки ее приложения; dA= Fxdx+Fydy+Fzdz – аналитическое выражение элементарной работы силы. Работа силы на любом конечном перемещении М0М1: . Если сила постоянна, то = F×s×cosa. Единицы работы:[1 Дж (джоуль) = 1 Нм]. , т.к. dx= dt и т.д., то .
Теорема о работе силы: Работа равнодействующей силы равна алгебраической сумме работ составляющих сил на том же перемещении А=А1+А2+…+Аn. Работа силы тяжести: , >0, если начальная точка выше конечной. Работа силы упругости: –работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины. Работа силы трения: если сила трения const, то - всегда отрицательна, Fтр=fN, f – коэфф.трения, N – нормальная реакция поверхности.
Работа силы тяготения. Сила притяжения (тяготения): , из mg= , находим коэфф. k=gR2. – не зависит от траектории. Мощность – величина, определяющая работу в единицу времени, . Если изменение работы происходит равномерно, то мощность постоянна: N=A/t. [1 Вт (ватт) =1 Дж/с, 1 кВт (киловатт) =1000 Вт, 1л.с.(лошадиная сила) = 75 кгс×м/с = 736 Вт].