Численное решение уравнения методом секущих. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм.
Метод секущих — один из численных методов решения уравнений.
В качестве функции берут любую постоянную , знак которой совпадает со знаком производной в окрестности (и, в частности, на отрезке, соединяющем и ). Постоянная не зависит также и от номера шага. Тогда формула итераций оказывается очень проста:
и на каждой итерации нужно один раз вычислить значение функции .
Выясним смысл этой формулы, а также смысл условия о совпадении знаков и . Рассмотрим прямую, проходящую через точку на графике с угловым коэффициентом . Тогда уравнением этой прямой будет
Иллюстрация последовательных приближений метода секущих.
Найдём точку пересечения этой прямой с осью из уравнения
откуда . Следовательно, эта прямая пересекает ось как раз в точке следующего приближения. Тем самым получаем следующую геометрическую интерпретацию последовательных приближений. Начиная с точки , через соответствующие точки графика проводятся секущие с угловым коэффициентом того же знака, что производная . (Заметим, что, во-первых, значение производной вычислять не обязательно, достаточно лишь знать, убывает функция или возрастает; во-вторых, что прямые, проводимые при разных , имеют один и тот же угловой коэффициент и, следовательно, параллельны друг другу.) В качестве следующего приближения к корню берётся точка пересечения построенной прямой с осью .
На чертеже справа изображены итерации при в случае и в случае . Мы видим, что в первом случае меняющаяся точка уже на первом шаге «перепрыгивает» по другую сторону от корня , и итерации начинают приближаться к корню с другой стороны. Во втором случае последовательные точки приближаются к корню, оставаясь всё время с одной стороны от него.
Условие сходимости
Достаточное условие сходимости, таково:
Это неравенство может быть переписано в виде
откуда получаем, что сходимость гарантируется, когда, во-первых,
так как (тем самым проясняется смысл выбора знака числа ), а во-вторых, когда при всех на всём рассматриваемом отрезке, окружающем корень. Это второе неравенство заведомо выполнено, если
где . Таким образом, угловой коэффициент не должен быть слишком мал по абсолютной величине: при малом угловом коэффициенте уже на первом шаге точка может выскочить из рассматриваемой окрестности корня , и сходимости итераций к корню может не быть.
Численное решение уравнения методом простых итераций. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм.
Метод простых итераций
В ряде случаев весьма удобным приемом уточнения корня уравнения является метод последовательных приближений (метод итераций).
Пусть с точностью необходимо найти корень уравнения f(x)=0, принадлежащий интервалу изоляции [a,b]. Функция f(x) и ее первая производная непрерывны на этом отрезке.
Для применения этого метода исходное уравнение f(x)=0 должно быть приведено к виду
(4.2) |
В качестве начального приближения 0 выбираем любую точку интервала [a,b].
Далее итерационный процесс поиска корня строится по схеме:
(4.3) |
В результате итерационный процесс поиска реализуется рекуррентной формулой (4.3). Процесс поиска прекращается, как только выполняется условие
(4.4) |
или число итераций превысит заданное число N.
Для того, чтобы последовательность х1, х2,…, хn приближалась к искомому корню, необходимо, чтобы выполнялось условие сходимости:
(4.5) |
Рис. 4.6. Геометрический смысл метода
Переходим к построению схемы алгоритма (рис. 4.7). Вычисление функции оформим в виде подпрограммы.
Рис. 4.7. Схема алгоритма уточнения корня методом итераций