Ускорение точки. Равномерное и равнопеременное движение точки

При естественном способе задания движения ускорение точки определяют формулой

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru . (16)

При этом

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , (17)

Где

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , (18)

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru . (19)

aτ - проекция ускорения Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru на Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , a Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru - алгебраическая

скорость точки;

an - модуль нормального ускорения точки;

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru -единичные векторы главной нормали и касательной.

Если точка движется равномерно, то

v = const; aτ = 0; s = s0 + vt. (20)

При равнопеременном движении aτ = const. В этом случае

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , (21)

s = s0 + v0 t + Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , (22)

а также

s = s0 + Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , (23)

s = s0 + Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru . (24)

Пример 4. При прямолинейном движении судна его скорость в пункте А была 10 узлов, а в пункте В стала 30 узлов. Расстояние между пунктами A и В равно 2 милям. Считая в первом приближении движение судна равноускоренным, определить время t движения судна на данном расстоянии, а также модуль его ускорения (узел - 1 единица скорости, равная миле в час, или 0,5144 м/с).

Решение. Если взять начало отсчета в начальном положении судна, то

s0 = 0; v0 = 10 узлов; v = 30 узлов; s = 2 мили.

По формуле (23) найдем

t = Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ч = 6 мин.

Пользуясь (21), получим

аτ = Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 220узл/ч

Так как движение прямолинейное, то аτ = а.

Задачи

1.2.8.* Искусственный спутник обращается вокруг Земли на высоте 500 км по круговой орбите. Определить время обращения и модуль скорости спутника, если известно, что его центростремительное ускорение должно быть равно ускорению свободно падающего тела. На данной высоте g = 8,5 м/с2, а радиус Земли R ≈ 6370 км.

Ответ: v = 7,64 км/с, t = 1,56 ч.

1.2.9.* Считая движение снаряда в канале ствола равноускоренным, определить изменение модуля скорости снаряда при выходе из канала, если ствол укоротить в п раз.

Ответ: Уменьшится в √п раз.

1.2.10.* Ракета, движущаяся вертикально вверх равноускоренно, в момент окончания процесса горения рабочего вещества (активный участок траектории) достигла высоты 30 км со скоростью 7200 км/ч. Считая дальнейшее движение ракеты равнозамедленным с ускорением, равным по модулю 9,2 м/с2, определить время t и полную высоту Н подъема ракеты, если в начальный момент ее скорость была равна нулю.

Ответ: Н = 247 км; t = 4 мин 7с.

1.2.11.* Точка движется по окружности радиусом R равноускоренно из состояния покоя и совершает первый полный оборот за t (с). Определить модули скорости и ускорения точки в конце этого промежутка времени.

Ответ: v = Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

Радиус кривизны траектории точки

Радиус кривизны траектории движущейся точки опре­деляют по формуле

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

Если даны уравнения движения точки в координатной форме: x = x(t); y = y(t); z = z(t), то для определения ρ находят:

1) Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ;

2) Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ;

3) Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ;

4) Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ;

5) Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

Пример 5. Движение точки задано уравнениями

х = b(3cos t + cos 3t),

у = b(3sin t+sin 3t)(b - постоянная величина).

Определить радиус кривизны траектории как функцию времени в промежутке Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

Решение. Определим проекции скорости точки на координатные оси:

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 3b(sin t + sin 3t);

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 3b(cos t + cos 3t),

следовательно,

v2 = 18b2 (1 + cos 2t) = 36b2 cos2 t,

откуда v = 6b cos t.

Касательное ускорение

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = - 6b sin t.

Найдем проекции ускорения точки на координатныеоси:

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = - Зb (cos t + 3 cos 3t);

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 3b(sin t -3sin 3t),

отсюда

a2 = 18b2(5 + З cos 2t).

Определим нормальное ускорение точки:

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ,

откуда

an = 126 cos t.

Искомый радиус кривизны траектории

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 3bcost.

Наибольший радиус кривизны ρmах = 3b.

Пример 6. Точка движется в плоскостихОу с постоянным ускорением Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , равным по модулю 2 м/с2 и направленным параллельно оси Ох. Определить радиус кривизны траектории точки в момент t = 1 с, если в начальный момент точка имела скорость Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru равную по модулю 2 м/с и направленную под углом α = 30° к оси Оу.

Решение. Согласно условиям задачи, ускорение Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru постояннопомодулю и направлению. Поэтому в любой момент времени будут иметь место соотношения

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 2; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 0.

Интегрируя, получим

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

Так как при t = 0

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ,

то

C1= v0 sin α = 1; C2 = v0cos α = √3.

Следовательно,

vх = 2t + 1; vy = √3.

Теперь найдем модули скорости

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru

и касательного ускорения

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

В момент t = 1 с, получим

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru м/c; Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru м/с2.

Так как a = 2 м/с2, то при t = 1 с

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = 1 м/с2.

После этого найдем

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru м.

Задачи

1.2.12.* Движение точки задано уравнениями х = 3t; y = 4t - 3t2 (х, у - в сантиметрах, t - в секундах). Определить радиус кривизны траектории точки в те мо­менты, когда она пересекает ось Ох.

Ответ: ρ = 6,94 см.

1.2.13.* Движение точки в вертикальной плоскости задано уравнениями

х = v0t – r sin Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; y = R – r cos Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , где v0, r и R — постоянные величины. Определить радиус кривизны траектории точки в наивысшем ее положении.

Ответ: ρ = (r + R)2/r.

1.2.14.* Движение точки задано уравнениями

х = r cos ωt +l sin Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru ; y = - l cos Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru + r sin ωt,

где r, l, ω — постоянные величины.

Определить радиус кривизны траек­тории точки в момент t = π/ω.

Ответ: ρ = Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

1.2.15.* Движение точки задано уравнениями x = 2b cos t – b cos 2t, y = 2b sin t – b sin 2t, где b - постоян­ная величина. Определить наибольший радиус кривизны траектории точки.

Ответ: ρтах = 8b/3

1.2.16.* Движение точки задано уравнениями х = t; y = sin t2. Определить радиус кривизны траектории точки в ближайший после начала движения момент вре­мени, в который точка пересекает ось Ох.

Ответ: ρ = 25,1.

1.2.17.* Движение точки задано уравнениями

x= t cos t, y = t sin t, z = Н - 2t, где постоянная величина Н и х, у, z - в метрах, t - в секундах. Определить радиус кривизны траектории точки в момент t = 2 с.

Ответ: ρ = 3,27 м.

1.2.18.* Движение точки задано уравнениями

х = еt соs t; y = et sin t; z = et. Определить радиус кривизны траектории точки в момент t.

Ответ: ρ = Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru .

1.2.19.* Точка движется в пространстве с постоян­ным ускорением Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , направленным параллельно оси Ох и равным по модулю 5 м/с2. В начальный момент точка имела скорость Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru равную по модулю 5 м/с и образующую с осями Ох и Оу соответственно углы α = 60° и β = 45°. Определить радиус кривизны траектории точки в момент t = 1 с.

Ответ: ρ = 30 м.

1.2.20.* Угол поворота винта судна диаметром 120 см изменяется по закону φ = 10πt рад (t - в секун­дах). Судно движется прямым курсом с постоянной ско­ростью, равной 10 м/с. Определить радиус кривизны траектории точки винта, наиболее удаленной от оси.

Ответ: ρ = 0,77 м.

1.2.21.*Колесо радиусом R катится без скольже­ния по прямолинейному рельсу со скоростью центра Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru = const. Определить радиус кривизны траектории точки на ободе колеса в тот момент, когда оно сделает 1/4 обо­рота, если в начальный момент данная точка совпадала с точкой касания.

Ответ: ρ = 2R√2.

1.2.22.* Из условий задачи 38 определить радиус кривизны траектории точки при повороте колеса на угол 120°.

Ответ: ρ = 2R√3.

1.2.23.*Движение точки по кривой у = х2 задано уравнением s = l,5t2 - 4t (х, у, s - в метрах, t - в секун­дах). При t = 0 x = y = 0. Определить: 1) характер дви­жения точки в моменты t0 = 0; t1 = 1 с и t2 = 2 с; 2) мо­дули скорости, касательного и нормального ускорений точки в момент t = 0.

Ответ: 1) при t = 0 и t = 1 с движение замедленное, при t = 2 с - ускоренное;

2) v = 4 м/с; aτ= 3 м/с2; аn = 32 м/с2.

1.2.24.* Движение точки задано уравнениями х = t; y = t2(х, у - в метрах, t - в секундах). Определить модули скорости и ускорения точки, а также радиус кри­визны траектории в момент, когда последний достигает своего наименьшего значения.

Ответ: v = 1 м/с; а = 2 м/с2; ρ = 0,5 м.

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru 1.2.25.* Перемещение грузов по под­весному тросу осуществляется с помощью люльки (рис. 21), под­вешенной к подвижному ролику С. Точки A и В крепле­ния троса находятся на одной горизонтали на

Рис. 21 расстоянии АВ = 40 м.

Считая части троса АС и ВС прямолиней­ными, определить радиус кривизны траектории ролика С, если наибольшее провисание троса равно 4 м. Найти также нормальное ускорение ролика и тот момент, когда он проходит середину троса со скоростью 3 м/с. Разме­рами ролика пренебречь.

Ответ: ρ = 100 м; ап= 0,0865 м/с2

1.2.26. Даны нормальное ап = 2,5 м/с2 и касательное аτ = 1,5 м/с2 уско­рения точки. Определить полное ускорение точки. (2,92)

1.2.27. Определить модуль ускорения точки, если его вектор Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru , где Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru и Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru - орты естественного триэдра. (4,30)

1.2.28. Точка движется по криволинейной траектории с касательным ус­корением аτ = 1,4 м/с2. Определить нормальное ускорение точки в момент времени, когда ее полное ускорение а = 2,6 м/с2. (2,19)

1.2.29. Определить нормальное ускорение точки в момент времени, ког­да ускорение точки а = 1,5 м/с2, а угол между векторами ускорения и скорости равен 65°. (1,36)

1.2.30. Точка движется по окружности. Определить радиус окружности, если в момент времени, когда скорость r = 10 м/с, вектор ускорения и вектор скорости, равный по модулю 1,2 м/с, образуют угол 30 . (167)

1.2.31. Ускорение точки равно а = 1 м/с. Векторы ускорения и скорости обра­зуют угол 45°. Определить скорость в км/ч, если радиус кривизны траектории ρ = 300 м. (52,4)

1.2.32. Точка движется по окружности, радиус которой r = 200 м, с касательным ускорением 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени, когда ее скорость v = 10 м/с. (14,0)

1.2.33. Точка движется по окружности, радиус которой r = 50 м, со скоростью v = 2t. Определить модуль полного ускорения в момент времени t = 5 с. (2,83)

1.2.34. Задано уравнение движения точки по криволинейной траекто­рии: s = 0,2 t2 + 0,3t. Определить полное ускорение точки в момент времени t = 3 с, если в этот момент радиус кривизны траектории ρ = 1,5м. (1,55)

1.2.35. Определить скорость точки в момент времени, когда радиус кривизны траектории ρ = 5 м, касательное ускорение аτ = 2 м/с2 , tg β = 3, где β - угол между векторами скорости и ускорения точки (5,48)

1.2.37. По окружности радиуса r = 6 м движется точка со скоростью v = 3t. Определить угол в градусах между ускорением и скоростью точки в момент времени t = 1 с. (26,6)

1.2.37. Точка движется по окружности радиуса r = 9 м. Определить скорость точки в момент времени, когда касательное ускорение аτ = 2 м/с2, а вектор полного ускорения Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru образует угол 70° с касательной к траектории. (7,03)

1.2.38. Точка движется по окружности радиуса r = 200 м из состояния покоя с постоянным касательным ускорением аτ = 1 м/с2. Опреде­лить, полное ускорение точки в момент времени t = 20с. (2,24)

1.2.39. На рис. 22 приведены графики ускорений

Ускорение точки. Равномерное и равнопеременное движение точки - student2.ru аτ = аτ (t) и ап = ап (t). Определить, какой угол в градусах образует полное ускорение с направлением скорости в момент времени t = 3 с. (56,3)

1.2.40. Точка движется по окружности радиуса r = 2 м. Нормальное ускорение точки

меняется согласно закону аn= 2t2.

Рис. 22 Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 1 с. (45)

1.2.41. Задан закон движения точки по траектории: s = 0,5t2. Опреде­лить угол в градусах между векторами скорости и полного ускорения точки в момент времени t1= 3 с, когда радиус кривизны ρ = 4 м.(66,0)

1.2.42. По окружности радиуса r = 1 м движется точка согласно урав­нению s = 0,1 t3. Определить полное ускорение точки в момент вре­мени t = 2 с. (1,87)

1.2.43. Точка движется по криволинейной траектории с касательным ускорением аτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t1= 2 с, когда радиус кривизны ρ = 4 м, если при t0 = 0 скорость v0 = 0. (63,4)

Наши рекомендации