Геометрическое распределение.
Дискретная случайная величина X имеет геометрическое распределение, если вероятности ее возможных значений 0,1,….,k,.. определяются так:
где p – параметр распределения, а q=1-p.
… | k | … | ||||
p | … | … |
На практике геометрическое распределение появляется при следующих условиях. Пусть производится некоторый опыт, в котором некоторое событие появляется с вероятностью p. Опыты производятся последовательно, до наступления события. Случайная величина X, равная числу неудачных опытов, имеет геометрическое распределение.
Числовые характеристики геометрического распределения:
Распределения непрерывных случайных величин. Равномерное, показательное, нормальное..
Равномерное распределение случайной величины.
Непрерывная случайная величина Х равномерно распределена в интервале [а; в], если ее плотность вероятности в этом интервале постоянна, т.е. если все значения в этом интервале равновероятны:
(8.1)
Значение постоянной с определяется из условия нормировки:
. (8.2)
Функция распределения:
, (8.3)
Числовые характеристики равномерно распределенной случайной величины определяются так:
(8.4)
(8.5)
Среднее квадратичное отклонение равномерного распределения равно
(8.6)
Равномерное распределение случайной величины полностью определяется двумя параметрами: a и b – интервалом, на котором определена случайная величина.
При необходимости можно определить параметры a и b равномерного распределения по известным значениям математического ожидания mX и дисперсии DX случайной величины. Для этого составляется система уравнений следующего вида:
, (8.7)
из которой определяются искомые параметры.
Вероятность попадания равномерно распределенной случайной величины в интервал [α,β) определяется так:
, где
Нормальное распределение
Непрерывная случайная величина Х имеет нормальное распределение, если ее плотность вероятности имеет вид:
(8.12)
Определим числовые характеристики нормально распределенной случайной величины Х. Математическое ожидание:
Применяя замену переменной
(8.13)
получим
В полученном выражении первый интеграл равен нулю (интеграл в симметричных пределах от нечетной функции), а второй интеграл есть интеграл Эйлера-Пуассона:
(8.14)
Таким образом, математическое ожидание величины Х равно m:
M[X]=m.
Вычислим дисперсию СВ Х:
Применяя замену переменной (8.13) получим:
Интегрируя по частям, получим:
Первое слагаемое в фигурных скобках равно нулю (т.к. при t→∞ убывает быстрее, чем возрастает любая степень t), второе слагаемое, согласно (8.14), равно , откуда
.
Таким образом, нормальное распределение случайной величины полностью описывается двумя числовыми характеристиками: математическим ожиданием M[X] и средним квадратичным отклонением σ.
Рассмотрим влияние параметров m и σ на кривую распределения. При изменении параметра m кривая f(x), не изменяя формы, будет смещаться вдоль оси абсцисс. Изменение σ равносильно изменению масштаба кривой по обеим осям; например, при удвоении σ масштаб по оси абсцисс удвоится, а по оси ординат уменьшится в два раза (рис. 8.3).
Центральные моменты нечетной степени для нормально распределенной случайной величины определяются равны нуню; для вычисления центральных моментов четной степени используется рекуррентное соотношение следующего вида:
(8.15)
Определим вероятность попадания нормально распределенной случайной величины в интервал от α до β:
Сделав замену переменной t=(x-m)/σ, получим:
Так как первообразная для e-x не выражается через элементарные функции, то для вычисления вероятностей событий, связанных с нормальными случайными величинами используют табулированную функцию Лапласа:
.
С помощью этой функции вероятность попадания нормально распределенной случайной величины на интервал от α до β определится так:
(8.16)
Функция Лапласа обладает следующими свойствами:
1. Φ(0)=0;
2. Φ(-х)=-Φ(х);
3. Φ(-∞)=0,5.
Функция распределения нормально распределенной случайной величины через функцию Лапласа выражается так:
(8.16)
Нормально распределенная случайная величина возникает в тех случаях, когда складывается много независимых (или слабо зависимых) случайных величин Х1, Х2, …, Xn. Тогда, каковы бы не были законы распределения отдельных случайных величин Xi, закон распределения их суммы будет близок к нормальному распределению. В частности, ошибки измерений распределяются по закону, близкому к нормальному.
показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Случайная величина Х называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.
Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю
P{X=α}=0 для любого α.
В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие плотности распределения или плотности вероятности.
Вероятность попадания непрерывной случайной величины X на участок от x до x+Dx равна приращению функции распределения на этом участке:
P{x£ X <x+Dx}=F(x+Dx) - F(x).
Плотность вероятности на этом участке определяется отношением
(5.6)
Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.
Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности.
Вероятность попадания случайной величины X на произвольный участок [a, b[ равна сумме элементарных вероятностей на этом участке:
(5.7)
В геометрической интерпретации P{α≤X<β} равна площади, ограниченной сверху кривой плотности распределения f(x) и опирающейся на участок (α,β) (рис. 5.4).
Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность:
(5.8)
В геометрической интерпретации F(x) равна площади, ограниченной сверху кривой плотности распределения f(x) и лежащей левее точки x (рис. 5.5).
Основные свойства плотности распределения:
1. Плотность распределения неотрицательна: f(x) ³ 0.
Это свойство следует из определения f(x) – производная неубывающей функции не может быть отрицательной.
2. Условие нормировки: Это свойство следует из формулы (5.8), если положить в ней x=∞.
Геометрически основные свойства плотности f(x) интерпретируются так:
1. вся кривая распределения лежит не ниже оси абсцисс;
2. полная площадь, ограниченная кривой распределения и осью абсцисс, равна единице.