Отношения между множествами. Подмножество

Даны два множества:

А = {a, b, c, d, e} и B = {b, d, k, e}. Видим, что элементы b и d принадлежат одновременно множеству А и множеству В. Говорят, что b и d – общие элементы множеств А и В, а сами множества пересекаются.

Замечание. Если множества не имеют общих элементов, то говорят, что они не пересекаются.

Рассмотрим теперь множества А = {a, b, c, d, e} и В = {c, d, e}. Они пересекаются, и, кроме того, каждый элемент множества В является элементом множества А. В этом случае говорят, что множество В включено в А или что множество В является подмножеством множества А.

Определение. Множество В называется подмножеством множества А, если каждый элемент множества В является также элементом множества А.

Если В – подмножество множества А, то пишут: В Ì А – и читают: «В – подмножество А», «В – включается в А».

Считают, что пустое множество является подмножеством любого множества, т. е. Æ Ì А, и что любое множество является подмножеством самого себя, т.е. А Ì А. Поэтому среди всех подмножеств заданного множества А должно быть обязательно пустое множество и само множество А.

Примеры

Выпишем все подмножества множества А = {2, 3, 4}.

Среди них будут одноэлементные подмножества: {2}, {3}, {4}, двухэлементные: {2, 3}, {3, 4}, {2, 4}, а также само множество А: {2, 3, 4} и Æ. Таким образом, данное множество А имеет 8 подмножеств.

Обратимся теперь к множествам А = {a, b, c, d, e} и В = {c, a, b, e, d}. Они пересекаются, и каждый элемент множества А является элементом множества В, т.е. А Ì В, и, наоборот, каждый элемент множества В является элементом множества А, т.е. В Ì А. В этом случае говорят, что множества А и В равны.

Определение. Множества А и В называются равными, если АÌ В и В Ì А.

Если множества А и В равны, то пишут: А = В.

Круги Эйлера-Венна

Из определения вытекает, что равные множества и отношения с множествами удобно иллюстрировать при помощи графических схем, в которых множества представляются в виде кругов, овалов или любых других геометрических фигур и предполагается, что в этих геометрических фигурах заключены все элементы данного множества. Такие геометрические фигуры называются кругами Эйлера, по имени немецкого математика Леонарда Эйлера, который в 1762 году приспособил эту геометрическую фигуру для логических целей.

Отношения между множествами. Подмножество - student2.ru Отношения между множествами. Подмножество - student2.ru Например, отношение включения между множествами А = {a, b, c, d, e} и В = {c, e, d} можно изобразить при помощи кругов Эйлера так:

Отношения между множествами. Подмножество - student2.ru Множества А = {a, b, c, d, e} и B = {b, d, k, e} Пересекаются, но ни одно из них не является подмножеством другого, поэтому при помощи кругов Эйлера они изображаются так:

Непересекающиеся множества изображают при помощи двух кругов, не имеющих общих точек.

Установить отношения между множествами – важное умение для учителя. Дело в том, что математика и другие науки изучают не только определенные объекты и явления, но и взаимосвязи, в том числе и отношения между множествами.

Отношения между множествами. Подмножество - student2.ru Выясним, например, как связаны между собой множества А четных чисел и множество В чисел, кратных 4. В каком из случаев, представленных на рисунках, отношения между данными множествами изображены верно?

Отношения между множествами. Подмножество - student2.ru Отношения между множествами. Подмножество - student2.ru Из рисунка следует, что все четные числа делятся на 4, что не верно: можно назвать числа, которые не делятся на 4, например 14. Этот контрпример сразу делает невозможным равенство данных множеств, т.е. случай представленный на следующем рисунке:

Отношения между множествами. Подмножество - student2.ru Следующий рисунок говорит о том, что среди чисел, кратных 4, есть четные, но есть и такие, которые не делятся на 2, что не верно: нетрудно доказать, что любое число, кратное 4, четно.

Следовательно, множество чисел, кратных 4, является подмножеством множества четных чисел. Эта связь изображена на последнем рисунке.

Так же как и понятие множества, понятие подмножества в начальной школе в явном виде не изучается, но задач, связанных с выделением части некоторой совокупности, учащиеся решают много.

Например

«Среди данных четырехугольников укажи прямоугольники».

«Назови среди данных чисел четные» и т. д.

Наши рекомендации