Тема 2.1. Производные функции

Студент должен:

Иметь представление:

- о производной сложной функции;

- о второй производной и производных высших порядков;

Знать:

- символику и определение производной, второй производной и производных высших порядков:

- табличные значения производных элементарных функций, в том числе обратных тригонометрических функций.

- правила дифференцирования функции

Уметь:

- находить производной сложной функции

- находить дифференциал функции

- находить вторую производную и производные высших порядков

- дифференцировать элементарные функции

Определение производной функции. Правила дифференцирования. Производная сложной функции. Теорема о производной обратной функции. Производные обратных тригонометрических функций. Дифференциал функции.

Вторая производная и производная высших порядков. Дифференцирование элементарных функций.

Тема 2.2. Исследование функции с помощью

Производной

Студент должен:

Иметь представление:

- об общей схеме исследования функции и построении ее графика:

Знать:

- определение точки перегиба:

- определение асимптот графика функции:

- общую схему исследования функции

Уметь:

- применять вторую производную для нахождения точек перегиба функции:

- устанавливать направления выпуклости графика функции

- находить асимптоты графика функции

- исследовать функцию по общей схеме и строить ее график

Применение второй производной. Асимптоты графика функции. Направление выпуклости графика функции. Точки перегиба. Общая схема исследования функции.

& Раздел 3. Интегральное исчисление

Тема 3.1. Неопределенный интеграл

Студент должен:

Знать:

- символику и определение неопределенного интеграла:

- свойства неопределенного интеграла:

- методы интегрирования (непосредственного интегрирования, введения новой переменной)

Уметь:

- вычислять неопределенные интегралы.

Понятие неопределенного интеграла. Основные свойства неопределенного интеграла. Методы интегрирования (непосредственное интегрирование, введение новой переменной) табличные интегралы. Нахождение неопределенных интегралов.

Тема 3.2. Определенный интеграл

Студент должен:

Иметь представление:

- о табличных интегралах:

- о вычислении геометрических, механических, физических величин с помощью интегрального исчисления;

Знать:

- символику и определение определенного интеграла:

- свойства определенного интеграла

- методы вычисления определенного интеграла

Уметь:

- вычислять определенные интегралы

- решать несложные задачи на применение определенного интеграла

Понятие определенного интеграла. Основные свойства определенного интеграла. Методы вычисления определенного интеграла.

Приближенные методы вычисления определенного интеграла. Вычисление геометрических, механических, физических величин с помощью определенных интегралов.

& Раздел 4. Дифференциальные уравнения

Тема 4.1. Дифференциальные уравнения

Студент должен:

Знать:

-методы решения простейших дифференциальных уравнения с частными производными:

- методы решения дифференциальных уравнений первого порядка линейных относительно частных производных.

Уметь:

-решать простейшие дифференциальные уравнения в частных производных:

- решать дифференциальные уравнения первого порядка, линейные относительно частных производных.

Простейшие дифференциальные уравнения в частных производных. Дифференциальные уравнения линейные относительно частных производных.

ДОМАШНЯЯ КОНТРОЛЬНАЯ РАБОТА

Вариант 1

1. В вазе 9 красных и 7 розовых гвоздик. Сколькими способами можно выбрать из нее 4 красных и 3 розовых гвоздики?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у = х3 – 12х + 4 и построить график

4. Резервуар ёмкостью 108 м3 с квадратным основанием, открытый сверху, нужно покрыть (с внешней стороны) эмалью. Каковы должны быть размеры резервуара, чтобы израсходовать для этого минимальное количество эмали?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = 8х – х2 – 7 и осью Ох

7. Решить дифференциальное уравнение: (1+у)dx – (1 – х)dу = 0

Вариант 2

1. В борьбе за призовые места на студенческой олимпиаде по информационным технологиям участвуют 16 команд. Сколькими способами можно распределить три призовых места между ними?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить U' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у = х3+ Тема 2.1. Производные функции - student2.ru х2+6х+2 и построить график

4. Тело движется прямолинейно по закону S = 2 + 12t +2t2 Тема 2.1. Производные функции - student2.ru t3. Найти максимальную скорость движения тела.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертеж и вычислить площадь фигуры, ограниченной линиями: у = х3 –1 у = 0, х = 0

7. Решить дифференциальное уравнение: ех(1+еу)dx+еу(1+ех)dу=0

Вариант 3

1. Для некоторой местности в июле шесть пасмурных дней. Найти вероятность, того что:

а) первого и второго июля будет ясная погода;

б) первого и второго июня будет ясная погода, а третьего июня - пасмурная.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить у' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у = х3 Тема 2.1. Производные функции - student2.ru х2 – 6х + 1 и построить график.

4. Какие размеры должен иметь цилиндр, площадь полной поверхности которого 96π см2, чтобы его объем был наибольшим?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = х2– 3х – 4 и Ох

7. Решить дифференциальное уравнение:Тема 2.1. Производные функции - student2.ru

Вариант 4

1. Из двухсот рабочих норму выработки не выполняют 15 человек. Найти вероятность того, что:

а) два случайно выбранных рабочих не выполняют

норму;

б) из двух случайным образом выбранных рабочих

один выполняет норму, а второй нет.

2. Вычислить предел: Тема 2.1. Производные функции - student2.ru

3. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить S' (2)

1. Исследовать функцию: у=х3–10,5х2+36х+1 и построить график.

2. Докажите, что из всех прямоугольников, имеющих периметр 36см, наибольшую площадь имеет квадрат.

3. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной данными линиями: у2 = 4х и х2 = 4у

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 5

1. В читальном зале 6 учебников по теории вероятностей, из которых 3 в мягком переплете. Библиотекарь взял два учебника. Найти вероятность, что: а) оба учебника окажутся в мягком переплете;

б) один учебник в мягком переплете, а один - в твердом.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить у'(0)

3. Исследовать функцию: у=х3Тема 2.1. Производные функции - student2.ru х2 – 6х+1 и построить график

4. Какой из цилиндров с объемом 128 см3 имеет наименьшую полную поверхность?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями у = 5х – х2 + 6 и осью Ох

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 6

1. В партии из 10 деталей 7 стандартных. Найдите вероятность того, что среди 6 взятых наудачу деталей 4 будут стандартными.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить у' Тема 2.1. Производные функции - student2.ru

4. Исследовать функцию: у = х3Тема 2.1. Производные функции - student2.ru х2+18х и построить график

5. Требуется приготовить ящик с крышкой, объем которого равен 288 см3, а стороны основания относятся как 1:3. Каковы должны быть размеры ящика, чтобы его полная поверхность была наименьшей?

6. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = х3, у = х2, х = –1, х = 0

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 7

1. Жюри конкурса 10 претендентов одинаково достойных первой премии. Среди них оказались 5 научных сотрудников. 2 студента, 3 рабочих. Какова вероятность того, что в результате жеребьевки премия будет отдана либо ученому, либо студенту?

2. Найти производную функции f(x)= x · lnx – x и вычислить f '(e3)

3. Исследовать функцию: у = х3Тема 2.1. Производные функции - student2.ru х2 +6х и построить график

4. Около стены нужно сделать забор, чтобы огородить прямоугольный участок земли наибольшей площади. Общая длина забора 60 м. Найдите длину части забора, параллельной стене.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертеж и вычислить площадь фигуры, ограниченной линиями: у=х2– 6х+8 и осью Ох

7. Решить дифференциальное уравнение: х2у /– 2ху=3у

Вариант 8

1. Из 15 билетов выигрышными являются 4. Какова вероятность того, что среди зятых наудачу 6 билетов будут 2 выигрышных?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить S' (0)

3. Исследовать функцию: у=х3 –х и построить график.

4. Гипотенуза прямоугольного треугольника равна 8 см. Найдите длину каждого катета, если площадь треугольника должна быть наибольшей.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = х2 и у = х + 2

7. Решить дифференциальное уравнение и найти частное решение: x2dx+ydy=0, если у=1 при х=0

Вариант 9

1. Для доступа в компьютерную сеть оператору необходимо набрать пароль из 4 цифр. Оператор забыл или не знает необходимого кода. Сколько всевозможных комбинаций он может составить для набора пароля, если а) цифры в коде не повторяются; б) повторяются.

2. Найти производную функции: y=tg2x – ctg2x и вычислить y' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у=6х3– x2 и построить график

4. Докажите, что из всех прямоугольников с площадью 400 см2 квадрат имеет наименьший периметр.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6.Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: у=х2 – 4х – 5 и осью Ох

7.Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru ,если у= –1 при х=0

Вариант 10

1. Монета подбрасывается 3 раза. Найти вероятность того, что при этом (безразлично в каком порядке) выпадет 2 раза герб и один раз цифра.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить y' (2)

3. Исследовать функцию: у=х3– 4х2– 3x+6 и построить график

4. Из всех прямоугольных параллелепипедов, у которых в основании лежит квадрат и площадь полной поверхности равна 600 см2, найдите параллелепипед наибольшего объема и определите его размеры.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: у=6х – 3х2 и осью Ох

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru ,если у=1 при х=1

Вариант 11

1. Группа туристов из12 юношей и 7 девушек выбирают по жребию 5 человек для приготовления ужина. Сколько существует способов, при которых в эту группу пятерку попадут: 1 юноша и 4 девушки?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить y' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у = х4 – 8x2 – 9 и построить график

4. Каковы должны быть размеры цилиндрического сосуда емкостью 8π литров открытого сверху, чтобы на его изготовление потребовалось наименьшее количество материала?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертеж и вычислить площадь фигуры, заключённой между линиями: у = х2 + 2 и у = 2х + 2

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 12

1. Десять различных книг расставляются наудачу на одной полке. Найти вероятность того, что три определенные книги окажутся поставленными рядом.

2. Найти вторую производную функции: Тема 2.1. Производные функции - student2.ru и вычислить f '' (–1)

3. Исследовать функцию: у = х3– 2x 2+ x и построить график

4. Путь S в метрах, пройденным телом за t секунд при прямолинейном движении, определяется управлением Тема 2.1. Производные функции - student2.ru . Найти скорость и ускорение в конце третьей секунды.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = х2 + 1, у = 0, х = 2, х = 5

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 13

1. Бросают одновременно две игральные кости. Найти вероятность следующих событий:

А – « сумма выпавших очков равна 8»;

В – «произведение выпавших очков равно 8»;

С – «сумма выпавших очков больше, чем их произведение ».

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить y'(0)

3. Исследовать функцию: у=2х3–3x2 и построить график

4. Найдите наибольшее и наименьшее значения функции: у = х5 – 5х4 + 5х3+1 на отрезке [–1;2]

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = 2х – х2 и у = х

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 14

1. В классе 17 девочек и 14 мальчиков. Определите вероятность того, что оба вызванных ученика окажутся: а) мальчиками; б) девочками, в) один мальчик и одна девочка.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить

f ' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: у = х3 – 3x2 и построить график

4. Число 50 представьте в виде суммы двух положительных слагаемых так, чтобы произведение этих чисел было наибольшим.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертеж и вычислить площадь фигуры, заключенной между линиями: Тема 2.1. Производные функции - student2.ru

7. Решить дифференциальное уравнение: 2у'=у, если при х=0 у=1

Вариант 15

1. Владимир хочет пригласить к себе в гости троих из семи своих лучших друзей. Сколькими способами он может это сделать? (35)

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить U' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Найти наибольшее и наименьшее значения функции: у = х4 – 2 х2+5 на отрезке: –2 ≤ х ≤ 2

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: х2 – 9у = 0 и х – 3у + 6 = 0

7. Решить дифференциальное уравнение:Тема 2.1. Производные функции - student2.ruесли при х=5 у=0

Вариант 16

1.Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?

2.Найти производную функции: у = Тема 2.1. Производные функции - student2.ru и вычислить у"(0)

3.Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4.Напишите уравнение касательной к кривой: у=х3+2х2–3х в точках её пересечения с осью Ох

5.Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6.Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: 4у – х3 =0; у – х = 0

7.Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 17

1.На втором курсе изучаются 14 предметов. Сколькими способами можно составить расписание занятий на пятницу, если в этот день недели должно быть четыре различных предмета?

2.Найти вторую производную функции: Тема 2.1. Производные функции - student2.ru и вычислить f"(2)

3.Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график.

4. Найти наибольшее и наименьшее значения функции: у = х3 – 3х2 + 3x + 2 на отрезке: – 2 ≤ х ≤ 2

5.Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6.Сделать чертёж и вычислить площадь фигуры, заключенной между следующими кривыми: у2 = х и у = х2

7.Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ruесли у = 4 при х = 0

Вариант 18

1. Из 40 вопросов, входящих в экзаменационные билеты, студент знает 30. Найти вероятность того, что среди трех наугад выбранных вопросов студент

знает: а) 3 вопроса; б) 1 вопрос.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить у' (2)

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Какое положительное число, будучи сложено с обратным ему числом, дает наименьшую сумму.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между кривыми: у = х2 и у = 1 – х2

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ruесли х = 0 при у = 1

Вариант 19

1. При игре в нарды бросают 2 игральных кубика. Какова вероятность того, что на обоих кубиках выпадут одинаковые числа?

2. Найти вторую производную функции: Тема 2.1. Производные функции - student2.ru и вычислить f" Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Из квадратного листа жести со стороной а требуется сделать открытый сверху ящик наибольшего объема, имеющий квадратное основание.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между следующими кривыми: 4х2–9у + 18 = 0 и 2х2– 9у + 36=0

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ruесли у = π при х = π

Вариант 20

1. В ящике лежат 1 белый и три черных шара. Наугад вынимаются 2 шара. Какова вероятность того, что вынуты: 1) 2 черных шара; 2) белый и черный шар?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить у' (0)

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Прямоугольный участок земли в 10000 м2 нужно окопать вдоль всей границы рвом. Как выбрать размеры участка, чтобы длина рва была наименьшая.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: у = х2 – 8х + 16 и х + у – 6 = 0

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 21

1.Набирая номер телефона, состоящий из 7 цифр, абонент забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые четыре цифры, которые знал, и наугад комбинацию из цифр !, 5 и 9. Какова вероятность того, что абонент набрал правильный номер?

2.Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить S' (3)

3.Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4.Сумма основания и высоты треугольника равна 10 см. Каковы должны быть размеры основания и высоты, чтобы площадь треугольника была наибольшая.

5.Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6.Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: у = 3х – 1, у = 0, х = 2, х = 4

7.Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 22

1. На каждой карточке написана одна из букв О, П, Р, С, Т. Несколько карточек наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании:

а) 3-х карточек получится слово РОТ;

б) 4-х карточек получится слово СОРТ;

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить f '(4)

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Из квадратного листа железа, сторона которого равна 30см, нужно вырезать по углам четыре квадрата так, чтобы из оставшейся части после сгибания получить коробку наибольшей емкости. Каковы при этом размеры вырезанных квадратиков?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между линиями х – 2у + 4 = 0 и х + у – 5 = 0; у = 0

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 23

1. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все три тетради окажутся в клетку?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru и вычислить f ' Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Из листа картона прямоугольной формы размером 30х50 см2 нужно вырезать по углам квадратики так, чтобы из оставшейся части после сгибания получить коробку наибольшей боковой поверхности. Подсчитать размеры вырезанных квадратиков.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между линиями: Тема 2.1. Производные функции - student2.ru

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 24

1. Четыре билета на елку распределили по жребию между 15 мальчиками и 12 девочками. Какова вероятность того, что билеты достанутся 2 мальчикам и 2 девочкам.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Окно имеет форму прямоугольника, который сверху заканчивается правильным треугольником. Периметр окна равен 3см. Каково должно быть основание прямоугольника, чтобы окно имело наибольшую площадь?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = 9 – х2 , у = 0

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 25

1. Группа шахматистов сыграла между собой 28 партий. Каждые два из них встречались между собой один раз. Сколько шахматистов участвовало в соревновании?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Сечение шлюзового канала имеет вид прямоугольника заканчивающегося полукругом. Периметр сечения равен 4,5м. При каком радиусе полукруга сечение будет иметь наибольшую площадь?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = х2 – 2х + 3, у = 0, х = 0, х = 3

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 26

1. Сколько экзаменационных комиссий состоящих из семи человек можно образовать из четырнадцати преподавателей?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Требуется изготовить ящик с крышкой, объём которого равен 72 дм3, а стороны основания относятся , как 1:2. каковы должны быть размеры всех сторон его, чтобы полная поверхность ящика была наименьшей?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, заключенной между линиями у = 4х – х2; у = 0

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 27

1. В библиотеке 10 книг по информационным техно­логиям, которые рекомендуется прочитать во время каникул. Сколькими способами студент может выбрать из них 3 книги?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Объём правильной четырехугольной призмы равен 8 дм3. Какова должна быть сторона основания призмы, чтобы полная поверхность ее была наименьшей?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры ограниченной линиями: у = х2; х = у2

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 28

1. Сколькими способами можно расставить 9 различных книг на полке, чтобы определенные 4 книги стояли рядом?

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Резервуар ёмкостью в 4 м3 с квадратным основанием, открытый сверху, нужно выложить оловом. Каковы должны быть размеры резервуара, чтобы израсходовать для этого минимальное количество олова?

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Вычислить площадь фигуры, ограниченной линиями: у = х2, 5х – у – 6 = 0

7. Решить дифференциальное уравнение:

Тема 2.1. Производные функции - student2.ru

Вариант 29

1. Имеется 10 белых и 5 черных шаров. Сколькими способами можно выбрать 7 шаров, чтобы среди них были 3 черных.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Найти величину радиуса основания и высоту цилиндра, имеющего объем 27π см3, у которого полная поверхность наименьшая.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: Тема 2.1. Производные функции - student2.ru

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Вариант 30

1. Из 200 рабочих норму выработки не выполняютю15 человек. Найти вероятность того, что 2 случайно выбранных человека не выполняют нармы.

2. Найти производную функции: Тема 2.1. Производные функции - student2.ru

3. Исследовать функцию: Тема 2.1. Производные функции - student2.ru и построить график

4. Какими нужно взять размеры цилиндрического сосуда ёмкостью в 1 л., открытого сверху, чтобы на его изготовление потребовалось наименьшее количество материала.

5. Вычислить интегралы:

а) Тема 2.1. Производные функции - student2.ru б) Тема 2.1. Производные функции - student2.ru

6. Сделать чертёж и вычислить площадь фигуры, ограниченной линиями: у = – х 2 + 6; у = 2х + 3

7. Решить дифференциальное уравнение: Тема 2.1. Производные функции - student2.ru

Наши рекомендации