Непосредственный подсчет вероятностей.
Основные понятия теории вероятности.
Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий . Примеры событий:
– попадание в цель при выстреле из орудия (опыт — произведение выстрела; событие — попадание в цель);
– выпадение двух гербов при трёхкратном бросании монеты (опыт — трёхкратное бросание монеты; событие - выпадение двух гербов);
– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие — ошибка измерения).
Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.
Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие — выпадание трех очков на первой игральной кости, событие — выпадание трех очков на второй кости. и — совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие — наудачу взятая коробка окажется с обувью черного цвета, событие — коробка окажется с обувью коричневого цвета, и — несовместные события.
Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.
Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная — невозможным.
Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.
События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.
Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. — появление красного шара при одном извлечении, — появление белого шара, — появление шара с номером. События образуют полную группу совместных событий.
Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным — событие , либо бракованным — событие .
Полная группа событий.
Говорят, что несколько событий в данном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.
Примеры событий, образующих полную группу:
1) выпадение герба и выпадение цифры при бросании монеты;
2) попадание и промах при выстреле;
4) появление белого шара и появление черного шара при вынимании одного шара из урны, в которой 2 белых и 3 черных шара;
6) хотя бы одно попадание и хотя бы один промах при двух выстрелах.
Несовместимые события.
Несколько событий называют несовместимыми в данном опыте, если никакие два из них не могут появиться вместе.
Примеры несовместимых событий:
1) выпадение герба и выпадение цифры при бросании монеты;
2) попадание и промах при выстреле;
4) ровно один отказ, ровно два отказа, ровно три отказа технического устройства за десять часов работы.
Равновозможные события.
Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из этих событий не является объективно более возможным, чем другое.
Примеры равновозможных событий:
1) выпадение герба и выпадение цифры при бросании монеты;
2) появление 1,3, 4, 5 очков при бросании игральной кости;
3) появление карты бубновой, червонной, трефовой масти при вынимании карты из колоды;
4) появление шара с №1, 2, 3 при вынимании одного шара из урны, содержащей 10 перенумерованных шаров.
Существуют группы событий, обладающие всеми тремя свойствами: они образуют полную группу, несовместимы и равновозможны; например: появление герба и цифры при бросании монеты; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости. События, образующие такую группу, называются случаями (иначе «шансами»).
Например, при бросании игральной кости возможны шесть случаев: появление 1, 2, 3, 4, 5, 6 очков. Из них событию – появлению четного числа очков – благоприятны три случая: 2, 4, 6 и не благоприятны остальные три.
Если опыт сводится к схеме случаев, то вероятность события в данном опыте можно оценить по относительной доле благоприятных случаев. Вероятность события вычисляется как отношение числа благоприятных случаев к общему числу случаев:
, (2.2.1)
где Р(А) – вероятность события ; – общее число случаев; – число случаев, благоприятных событию .
Так как число благоприятных случаев всегда заключено между 0 и (0 – для невозможного и – для достоверного события), то вероятность события, вычисленная по формуле (2.2.1), всегда есть рациональная правильная дробь:
(2.2.2)
Формула (2.2.1), так называемая «классическая формула» для вычисления вероятностей, долгое время фигурировала в литературе как определение вероятности. В настоящее время при определении (пояснении) вероятности обычно исходят из других принципов, непосредственно связывая понятие вероятности с эмпирическим понятием частоты; формула же (2.2.1) сохраняется лишь как формула для непосредственного подсчета вероятностей, пригодная тогда и только тогда, когда опыт сводится к схеме случаев, т.е. обладает симметрией возможных исходов.
Теорема Байеса
Теорема Байеса, Формула Байеса — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие(гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны. Названа в честь ее автора, преп. Томаса Байеса (посвященная ей работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году,[1] через 2 года после смерти автора). Полученную по формуле вероятность можно далее уточнять, принимая во внимание данные новых наблюдений.
Психологические эксперименты[2] показали, что люди при оценках вероятности игнорируют различие априорных вероятностей (ошибка базовой оценки), и потому правильные результаты, получаемые по теореме Байеса, могут очень отличаться от ожидаемых.
Формула Байеса:
,
где
P(A) — априорная вероятность гипотезы A (смысл такой терминологии см. ниже);
P(A | B) — вероятность гипотезы A при наступлении события B (апостериорная вероятность);
P(B | A) — вероятность наступления события B при истинности гипотезы A;
P(B) — вероятность наступления события B.
«Физический смысл» и терминология
Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.
События, отражающие действие «причин», в данном случае обычно называют гипотезами, так как они — предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще), а условную — с учетом факта произошедшего события — апостериорной (насколько вероятна причинаоказалась с учетом данных о событии).
Следствие
Важным следствием формулы Байеса является формула полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них!).
— вероятность наступления события B, зависящего от ряда гипотез Ai, если известны степени достоверности этих гипотез (например, измерены экспериментально);
Математическое ожидание.
Определение 7.1. Математическим ожиданиемдискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:
М(Х) = х1р1 + х2р2 + … + хпрп . (7.1)
Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.
Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.
Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.
Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.
Формулировка гипотезы
В статистических задачах часто бывает нужно сравнить средние двух разных выборок[13]. Например, нас может интересовать разница средних зарплат мужчин и женщин, средних возрастов неких групп <А> и <В> и т.д. Или же, сформировав две независимые экспериментальные группы, мы можем сравнивать их средние с целью проверить, насколько различается, скажем, воздействие двух разных лекарств на кровяное давление или насколько размер группы влияет на отметки студентов. Иногда бывает так, что мы разбиваем совокупность на две группы попарно, то есть, имеем дело с близнецами, супружескими парами или одним и тем же человеком до и после какого-либо эксперимента и т.д. Чтобы стало более ясно, рассмотрим характерные примеры, где применяются различные критерии о равенстве средних.
Основные понятия теории вероятности.
Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий . Примеры событий:
– попадание в цель при выстреле из орудия (опыт — произведение выстрела; событие — попадание в цель);
– выпадение двух гербов при трёхкратном бросании монеты (опыт — трёхкратное бросание монеты; событие - выпадение двух гербов);
– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие — ошибка измерения).
Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.
Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие — выпадание трех очков на первой игральной кости, событие — выпадание трех очков на второй кости. и — совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие — наудачу взятая коробка окажется с обувью черного цвета, событие — коробка окажется с обувью коричневого цвета, и — несовместные события.
Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.
Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная — невозможным.
Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.
События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.
Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. — появление красного шара при одном извлечении, — появление белого шара, — появление шара с номером. События образуют полную группу совместных событий.
Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным — событие , либо бракованным — событие .
Непосредственный подсчет вероятностей.
Существует целый класс опытов, для которых вероятности их возможных исходов легко оценить непосредственно из условий самого опыта. Для этого нужно, чтобы различные исходы опыта обладали симметрией и в силу этого были объективно одинаково возможными.
Рассмотрим, например, опыт, состоящий в бросании игральной кости, т.е. симметричного кубика, на гранях которого нанесено различное число очков: от 1 до 6.
В силу симметрии кубика есть основания считать все шесть возможных исходов опыта одинаково возможными. Именно это дает нам право предполагать, что при многократном бросании кости все шесть граней будут выпадать примерно одинаково часто. Это предположение для правильно выполненной кости действительно оправдывается на опыте; при многократном бросании кости каждая её грань появляется примерно в одной шестой доле всех случаев бросания, причем отклонение этой доли от 1/6 тем меньше, чем большее число опытов произведено. Имея в виду, что вероятность достоверного события принята равной единице, естественно приписать выпадению каждой отдельной грани вероятность, равную 1/6. Это число характеризует некоторые объективные свойства данного случайного явления, а именно свойство симметрии шести возможных исходов опыта.
Для всякого опыта, в котором возможные исходы симметричны и одинаково возможны, можно применить аналогичный прием, который называется непосредственным подсчетом вероятностей.
Симметричность возможных исходов опыта обычно наблюдается только в искусственно организованных опытах, типа азартных игр. Так как первоначальное развитие теория вероятностей получила именно на схемах азартных игр, то прием непосредственного подсчета вероятностей, исторически возникший вместе с возникновением математической теории случайных явлений, долгое время считался основным и был положен в основу так называемой «классической» теории вероятностей. При этом опыты, не обладающие симметрией возможных исходов, искусственно сводились к «классической» схеме.
Несмотря на ограниченную сферу практических применений этой схемы, она все же представляет известный интерес, так как именно на опытах, обладающих симметрией возможных исходов, и на событиях, связанных с такими опытами, легче всего познакомиться с основными свойствами вероятностей. Такого рода событиями, допускающими непосредственный подсчет вероятностей.
Предварительно введем некоторые вспомогательные понятия.
Полная группа событий.
Говорят, что несколько событий в данном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.
Примеры событий, образующих полную группу:
1) выпадение герба и выпадение цифры при бросании монеты;
2) попадание и промах при выстреле;
4) появление белого шара и появление черного шара при вынимании одного шара из урны, в которой 2 белых и 3 черных шара;
6) хотя бы одно попадание и хотя бы один промах при двух выстрелах.
Несовместимые события.
Несколько событий называют несовместимыми в данном опыте, если никакие два из них не могут появиться вместе.
Примеры несовместимых событий:
1) выпадение герба и выпадение цифры при бросании монеты;
2) попадание и промах при выстреле;
4) ровно один отказ, ровно два отказа, ровно три отказа технического устройства за десять часов работы.
Равновозможные события.
Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из этих событий не является объективно более возможным, чем другое.
Примеры равновозможных событий:
1) выпадение герба и выпадение цифры при бросании монеты;
2) появление 1,3, 4, 5 очков при бросании игральной кости;
3) появление карты бубновой, червонной, трефовой масти при вынимании карты из колоды;
4) появление шара с №1, 2, 3 при вынимании одного шара из урны, содержащей 10 перенумерованных шаров.
Существуют группы событий, обладающие всеми тремя свойствами: они образуют полную группу, несовместимы и равновозможны; например: появление герба и цифры при бросании монеты; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости. События, образующие такую группу, называются случаями (иначе «шансами»).
Например, при бросании игральной кости возможны шесть случаев: появление 1, 2, 3, 4, 5, 6 очков. Из них событию – появлению четного числа очков – благоприятны три случая: 2, 4, 6 и не благоприятны остальные три.
Если опыт сводится к схеме случаев, то вероятность события в данном опыте можно оценить по относительной доле благоприятных случаев. Вероятность события вычисляется как отношение числа благоприятных случаев к общему числу случаев:
, (2.2.1)
где Р(А) – вероятность события ; – общее число случаев; – число случаев, благоприятных событию .
Так как число благоприятных случаев всегда заключено между 0 и (0 – для невозможного и – для достоверного события), то вероятность события, вычисленная по формуле (2.2.1), всегда есть рациональная правильная дробь:
(2.2.2)
Формула (2.2.1), так называемая «классическая формула» для вычисления вероятностей, долгое время фигурировала в литературе как определение вероятности. В настоящее время при определении (пояснении) вероятности обычно исходят из других принципов, непосредственно связывая понятие вероятности с эмпирическим понятием частоты; формула же (2.2.1) сохраняется лишь как формула для непосредственного подсчета вероятностей, пригодная тогда и только тогда, когда опыт сводится к схеме случаев, т.е. обладает симметрией возможных исходов.