Двумерная случайная величина
До сих пор мы рассматривали дискретные случайные величины, которые называют одномерными: их возможные значения определялись одним числом. Кроме одномерных величин рассматривают также величины, возможные значения которых определяются несколькими числами. Двумерную случайную величину обозначают через (X, Y); каждая из величин X и Y называется компонентой (составляющей). Обе величины Х и Y, рассматриваемые одновременно, образуют систему двух случайных величин. Например, при штамповке стальных пластинок их длина и ширина представляют собой двумерную случайную величину.
Определение 1. Законом распределения двумерной случайной величины (X, Y) называют множество возможных пар чисел (xi, yj) и их вероятностей p(xi, yj). Двумерную случайную величину можно трактовать как случайную точку А(Х, Y) на координатной плоскости.
Закон распределения двумерной случайной величины обычно задается в виде таблицы, в строках которой указаны возможные значения xi случайной величины X, а в столбцах — возможные значения yj случайной величины Y, на пересечениях строк и столбцов указаны соответствующие вероятности pij. Пусть случайная величина Х может принимать п значений, а случайная величина Y - т значений. Тогда закон распределения двумерной случайной величины (X, Y) имеет вид
Из этой таблицы можно найти законы распределения каждой из случайных компонент. Например, вероятность того, что случайная величина Х примет значение хk, равна, согласно теореме сложения вероятностей независимых событий,
Иными словами, для нахождения вероятности Р(хk) нужно просуммировать все т вероятностей по k-му столбцу таблицы (18.21). Аналогично получается вероятность того, что случайная величина Y примет возможное значение уr: Р(уr) получается суммированием всех n вероятностей r-й строки таблицы (18.21) (r = 1, 2, ... ,m). Отсюда следует, что сумма всех вероятностей в законе распределения (18.21) равна единице:
Пример 1. Задано распределение двумерной случайной величины:
Найти распределения Х, Y и Х + Y.
Решение. В нашем случае возможные значения случайной величины X: х1 = 1, х2 = 2, x3 = 3. Тогда, согласно формуле (18.22), имеем P(x1) = 0,1 + 0,2 = 0,3, P(x2) = 0,15 + 0,22 = 0,37, Р(x3) = 0,12 + 0,21 = 0,33. Отсюда получаем закон распределения X:
Аналогично получаем и для распределения Y: у1 = 1, y2 = 2; P(y1) = 0,1 + 0,15 + 0,12 = 0,37, P(y2) = 0,2 + 0,22 + 0,21 = 0,63;
Теперь найдем распределение X+Y. Возможные значения этой случайной величины: 2, 3, 4 и 5. Соответствующие вероятности Р(2) = 0,1, Р(3) = 0,15 + 0,2 = 0,35, Р(4) = 0,12 + 0,22 = 0,34, Р(5) = 0,21. Отсюда находим искомое распределение:
В случае системы двух случайных величин используются кроме математических ожиданий и дисперсий еще и другие числовые характеристики, описывающие их взаимосвязь.
Корреляционный момент
Определение 2. Корреляционным моментом случайных величин Х и Y (или ковариацией) называется математическое ожидание произведений их отклонений:
Корреляционный момент служит для описания связи между случайными величинами Х и Y. Из свойств математического ожидания легко убедиться в том, что μxy можно записать в следующем виде:
Для непосредственного вычисления корреляционного момента (ковариации) используется формула (см. распределение (18.21))
ТЕОРЕМА 3. Корреляционный момент двух независимых случайных величин Х и Y равен нулю.
Если корреляционный момент μxу не равен нулю, то, стало быть, величины Х и Y являются зависимыми.
Коэффициент корреляции
Из определения корреляционного момента следует, что его размерность равна произведению размерностей величин Х и Y; например, если Х и Y измерены в сантиметрах, то μxy имеет размерность см2.
Это обстоятельство затрудняет сравнение корреляционных моментов различных систем случайных величин. Для устранения этого недостатка вводят безразмерную числовую характеристику — коэффициент корреляции, величина которого не зависит от выбора системы измерения случайных величин.
Определение 3. Коэффициентом корреляции случайных величин Х и Y называется отношение их корреляционного момента к произведению средних квадратических отклонений этих величин:
Из определения и свойств математического ожидания и дисперсии следует важный вывод, что абсолютная величина коэффициента корреляции не превосходит единицы:
Определение 4. Две случайные величины Х и Y называются коррелированными, если их корреляционный момент (коэффициент корреляции) отличен от нуля; если же их корреляционный момент равен нулю, то Х и Y называются некоррелированными.
Таким образом, две коррелированные случайные величины (т.е. при rxy ≠ 0) являются также и зависимыми. Обратное утверждение неверно, т.е. две зависимые величины могут быть как коррелированными, так и некоррелированными.
Пример 2. Найти корреляционный момент и коэффициент корреляции двух случайных величин Х и Y, распределения которых заданы в предыдущем примере 1.
Решение. Воспользуемся формулами (18.24), (18.26), а также формулой вычисления центрального момента второго порядка (18.19); последовательно вычисляем: М(Х) = 2,03, М(Y) = 1,63, D(X) = 0,629, D(Y) = 0,233,
В данном случае коэффициент корреляции близок к нулю; это означает, что случайные величины Х и Y слабокоррелированы.
Линейная регрессия
Пусть (X, Y) — двумерная случайная величина, где Х и Y — зависимые случайные величины. Оказывается возможным приближенное представление величины Y в виде линейной функции величины X:
где а и b — параметры, подлежащие определению. Обычно эти величины определяются с помощью метода наименьших квадратов (см. п. 8.5).
Определение 5. Функция (18.27) называется наилучшим приближением в смысле метода наименьших квадратов, если математическое ожидание M[Y — g(Х)]2 принимает наименьшее возможное значение. Функцию g(х) называют среднеквадратической регрессией Y на X.
ТЕОРЕМА 4. Линейная средняя квадратическая регрессия Y на Х имеет вид
где rxy определяется формулой (18.25), ту = M(Y) и mx = М(Х) — математические ожидания соответственно случайных величин Y и X.
Коэффициент b = rxуσу / σx называют коэффициентом регрессии Y на Х, а прямую
реализующую линейную зависимость (18.28) случайной величины Y от случайной величины X, называют прямой среднеквадратической регрессии Х на Y. Поскольку зависимость (18.28) является приближенной, то существует погрешность этого приближения, называемая остаточной дисперсией:
Аналогичную форму записи имеет прямая среднеквадратическая регрессия Х на Y:
Пример 3. Найти линейную среднюю квадратическую регрессию и остаточную дисперсию случайной величины Y на случайную величину Х по данным примеров 1 и 2.
Решение. Для двумерной случайной величины (X, Y), приведенной в примере 1, все необходимые числовые характеристики указаны в решении примера 2: mx = 2,03, ту = 1,63, rху = -0,023, σx = = 0,793, σy = = 0,483. Из уравнения (18.28) получаем искомое соотношение:
Остаточная дисперсия рассчитывается по формуле (18.29):
Для оценки среднеквадратичной погрешности линейной регрессии обычно используют величину ε, в нашем случае она составляет