Использование систем линейных уравнений
Рассмотрим задачи, приводящие к составлению и решению систем линейных алгебраических уравнений.
6. Прогноз выпуска продукции по запасам сырья. Предприятие выпускает три вида продукции, используя сырье трех типов. Необходимые характеристики производства указаны в табл. 16.3. Требуется определить объем выпуска продукции каждого вида при заданных запасах сырья. Задачи такого рода типичны для прогнозов и оценок функционирования предприятий, экспертных оценок проектов освоения месторождений полезных ископаемых, а также для планирования микроэкономики предприятий.
Решение. Обозначим неизвестные объемы выпуска продукции через x1, x2 и x3. Тогда при условии полного расхода запасов для каждого вида сырья можно записать балансовые соотношения, которые образуют систему трех уравнений с тремя неизвестными:
Решая эту систему уравнений любым способом, находим, что при заданных запасах сырья объемы выпуска продукции составят по каждому виду соответственно (в условных единицах)
7. Общая постановка задачи прогноза выпуска продукции. Пусть
— матрица затрат сырья т видов при выпуске продукции п видов. Тогда при известных объемах запаса каждого вида сырья, которые образуют соответствующий вектор
вектор-план = (х1, х2, ... , xп) выпуска продукции определяется из решения системы т уравнений с n неизвестными
где индекс Т означает транспонирование вектора-строки в вектор-столбец.
Модель Леонтьева многоотраслевой экономики
Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.
Балансовые соотношения
Для простоты будем полагать, что производственная сфера хозяйства представляет собой п отраслей, каждая из которых производит свой однородный продукт. Для обеспечения своего производства каждая отрасль нуждается в продукции других отраслей (производственное потребление). Обычно процесс производства рассматривается за некоторый период времени; в ряде случаев такой единицей служит год.
Введем следующие обозначения:
— xi — общий объем продукции i-й отрасли (ее валовой выпуск);
— xij — объем продукции i-й отрасли, потребляемый j-йотраслью при производстве объема продукции xj;
— yi — объем продукции i-й отрасли, предназначенный для реализации (потребления) в непроизводственной сфере, или так называемый продукт конечного потребления. К нему относятся личное потребление граждан, удовлетворение общественных потребностей, содержание государственных институтов и т.д.
Балансовый принцип связи различных отраслей промышленности состоит в том, что валовой выпуск i-й отрасли должен быть равным сумме объемов потребления в производственной и непроизводственной сферах. В самой простой форме (гипотеза линейности, или простого сложения) балансовые соотношения имеют вид
Уравнения (16.2) называются соотношениями баланса.
Поскольку продукция разных отраслей имеет разные измерения, будем в дальнейшем иметь в виду стоимостный баланс.