Уравнение прямой, проходящей через две заданные несовпадающие точки
Уравнение прямой, проходящей через две заданные несовпадающие точки и
или
или в общем виде
68. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой
Две прямые, заданные уравнениями
или
Эти прямые параллельны, если A1B2 − A2B1 = 0 или k1 = k2, и
перпендикулярны, если A1A2 + B1B2 = 0 или
Расстояние точки A(x1, y1) до прямой Ax + By + C = 0 есть длина перпендикуляра, опущенного из этой точки на прямую. Она определяется по формуле
69. Декартова система координат. Способы задания поверхностей. Общее уравнение поверхности в пространстве.
ДЕКА́РТОВА СИСТЕ́МА КООРДИНА́Т, прямолинейная система координат на плоскости или в пространстве (обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям). Названа по имени Р. Декарта (см. ДЕКАРТ Рене).
Декарт впервые ввел координатную систему, которая существенно отличалась от общепринятой в наши дни. Для задания декартовой прямоугольной системы координат выбирают взаимно перпендикулярные прямые, называемые осями. Точка пересечения осей O называется началом координат. На каждой оси задается положительное направление и выбирается единица масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.
Метод задания поверхности каркасом линии называется каркасным.
Аналитический способ задания поверхности находит широкое применение в практике, особенно если требуется исследовать внутренние свойства поверхности. При проектировании поверхностей технических форм и их воспроизведении на станках с программным управлением используются совместно графические и аналитические способы задания поверхностей.
Поверхности рассматривают как множество точек и линий. Координаты точек этого множества удовлетворяют некоторому заданному уравнению вида F(x, y, z) = 0.
Алгебраической поверхностью n-го порядка называется поверхность, уравнение которой – алгебраическое уравнение степени n.
Графический способ задания поверхностей.
Способы аналитического задания
1. - векторно-параметрическое уравнение.
2. - параметрические уравнения.
3. - явное уравнение.
4. - неявное уравнение.
Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности. Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.
Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны. ( ) = 0 Таким образом, Уравнение плоскости, проходящей через три точки:
70. Общее уравнение плоскости в пространстве. Уравнение плоскости в отрезках
Плоскостьюназывается поверхность, вес точки которой удовлетворяют общему уравнению:
Ax + By + Cz + D = 0,
где А, В, С – координаты вектора -вектор нормали к плоскости.
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох
В = 0 – плоскость параллельна оси Оу
С = 0 – плоскость параллельна оси Оz
D = 0 – плоскость проходит через начало координат
А = В = 0 – плоскость параллельна плоскости хОу
А = С = 0 – плоскость параллельна плоскости хОz
В = С = 0 – плоскость параллельна плоскости yOz
А = D = 0 – плоскость проходит через ось Ох
В = D = 0 – плоскость проходит через ось Оу
С = D = 0 – плоскость проходит через ось Oz
А = В = D = 0 – плоскость совпадает с плоскостью хОу
А = С = D = 0 – плоскость совпадает с плоскостью xOz
В = С = D = 0 – плоскость совпадает с плоскостью yOz
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.
Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны. ( ) = 0 Таким образом, Уравнение плоскости, проходящей через три точки:
71. Условие параллельности и перпендикулярности плоскостей. Нормальное уравнение плоскости.