При формировании интервальных оценок определяют границы интервалов, между которыми с большой вероятностью находятся истинные значения параметров.
Начнем с точечных оценок и рассмотрим оценку произвольного параметра (среднего, дисперсии или какого-то другого) генеральной совокупности, который обозначим a. Оценивая параметр a по выборке, находим такую величину , которую принимаем за точечную оценку параметра a. Естественно, при этом стремимся, чтобы оценка была в определенном смысле наилучшей, поэтому к ней предъявляется ряд требований:
1. Состоятельность. Точечная оценка называется состоятельной, если при неограниченном увеличении объема выборки ( ) она стремится к истинному значению параметра a.
В математической статистике показывается, что состоятельной оценкой генерального среднего значения , является выборочное среднее арифметическое , а состоятельной оценкой генеральной дисперсии — выборочная дисперсия . 2.Несмещенность. Оценка называется несмещенной, если она не содержит систематической ошибки, т. е. среднее значение оценки, определенное по многократно повторенной выборке объема n из одной и той же генеральной совокупности, стремится к истинному значению соответствующего генерального параметра a.
Выборочное среднее арифметическое является несмещенной оценкой генерального среднего .
Несмещенной оценкой генеральной дисперсии является исправленная выборочная дисперсия, вычисляемая по формуле:
для несгруппированных данных
для сгруппированных данных
Доверительный интервал для оценки математического ожидания нормального распределения при известном среднем квадратическом отклонении.
Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего оценить ее математическое ожидание а. Будем рассматривать выборочное среднее как случайную величину а значения вариант выборки х1, х2,…, хп как одинаково распределенные независимые случайные величины Х1, Х2,…, Хп, каждая из которых имеет математическое ожидание а и среднее квадратическое отклонение σ. При этом М( ) = а, . Оценим вероятность выполнения неравенства . Применим формулу для вероятности попадания нормально распределенной случайной величины в заданный интервал:
р ( ) = 2F . Тогда , с учетом того, что , р ( ) = 2F =
=2F( t ), где . Отсюда , и предыдущее равенство можно переписать так:
. (18.1)
Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал , где значение t определяется из таблиц для функции Лапласа так, чтобы выполнялось равенство 2F(t) = γ.
Доверительный интервал для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении.
Если известно, что исследуемая случайная величина Х распределена по нормальному закону с неизвестным средним квадратическим отклонением, то для поиска доверительного интервала для ее математического ожидания построим новую случайную величину
, (18.2)
где - выборочное среднее, s – исправленная дисперсия, п – объем выборки. Эта случайная величина, возможные значения которой будем обозначать t, имеет распределение Стьюдента (см. лекцию 12) с k = n – 1 степенями свободы.
Поскольку плотность распределения Стьюдента , где , явным образом не зависит от а и σ, можно задать вероятность ее попадания в некоторый интервал (- tγ , tγ ), учитывая четность плотности распределения, следующим образом: . Отсюда получаем:
(18.3)
Таким образом, получен доверительный интервал для а, где tγ можно найти по соответствую-щей таблице при заданных п и γ.