Ряд фурье по ортогональным системам функций
Последовательность функций непрерывных на отрезке [a,b], называетсяортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если
Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],
если выполняется условие
Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системеназывается ряд:
коэффициенты которого определяются равенством:
n=1,2,...
Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи
где n=1,2,...
Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке
по ортогональной системе называется ряд:
,
Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).
Интеграл Фурье
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1) абсолютной интегрируемости на
(т.е. интеграл сходится)
2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой
3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)
Интегралом Фурье функции f(x) называется интеграл вида:
, где ,
.
Интеграл Фурье для четной и нечетной функции
Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.
Учитывая, что , а также свойство интегралов по симметричному относительно точки x=0 интервалу от четных функций, из равенства (2) получаем:
(3)
Таким образом, интеграл Фурье четной функции f(x) запишется так:
,
где a(u) определяется равенством (3).
Рассуждая аналогично, получим, для нечетной функции f(x) :
(4)
и, следовательно, интеграл Фурье нечетной функции имеет вид:
,
где b(u) определяется равенством (4).
Комплексная форма интеграла Фурье
, (5)
где
.
Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).
Если в формуле (5) заменить c(u) его выражением, то получим:
, где правая часть формулы называется двойным интегралом
Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу
в действительной форме и обратно осуществим с помощью формул:
Формулы дискретного преобразования Фурье
Обратное преобразование Фурье.
где n=1,2,..., k=1,2,...
Дискретным преобразованием Фурье - называется N-мерный вектор
при этом, .
50. Преобразование Фурье
Дискретное преобразование Фурье трансформирует последовательность комплексных (либо вещественных) чисел xn в последовательность комплексных чисел Xn . Прямое и обратное преобразования Фурье определяются, как:
Приведенные выше формулы имеют сложность O(N 2), однако широко известен способ снизить сложность дискретного преобразования Фурье доO(N·log(N)). Быстрое преобразование Фурье широко используется как само по себе, так и для ускорения вычисления других преобразований - быстрого вычисления свертки и кросс-корреляции.