Вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения

Пусть Х — некоторый признак изучаемого объекта или явления (срок службы электролампы, вес студента, диаметр шарика для подшипника и т.п.). Генеральной совокупностью является множество всех возможных значений этого признака, а результаты n наблюдений над признаком Х дадут нам выборку объема n — первоначальные статистические данные, значения вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru (простая выборка, не сгруппированные данные)

При этом значение вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru получено при первом наблюдении случайной величины Х, вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru – при втором наблюдении той же случайной величины и т.д.

Выборку преобразуют в вариационный ряд, располагая результаты наблюдений в порядке возрастания: вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru Каждый член вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru вариационного ряда называется вариантой.

Пример 4.1.

1. Измерена масса тела 10-ти детей 6-ти лет. Полученные данные образуют простой статистический ряд: 24 22 23 28 24 23 25 27 25 25.

2. Из 10000 выпущенных на конвейере электрических лампочек отобрано 300 штук для проверки качества всей партии. Здесь вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru а вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru

Отдельные значения статистического ряда называются вариантами. Если варианта хi появилась m раз, то число m называют частотой, а ее отношение к объему выборки m/n – относительной частотой.

Последовательность вариант, записанная в возрастающем (убывающем) порядке, называется ранжированным рядом.

Пример 4.2. Для ранжированного ряда: 23 23 24 24 25 25 25 27 28 в нижеприведенной таблице в первой строке записаны все значения величины (варианты), во второй – соответствующие им частоты (безынтервальный вариационный ряд), в третьей – накопленные частоты, в четвертой – относительные частоты (табл.4.1).

Таблица 4.1. Значения вариант и их частот

Х
ni
nн
вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru 0.1 0.2 0.2 0.3 0.1 0.1

Полигоном частот называют ломаную линию, отрезки которой соединяют точки с координатами (хi; ni) (рис. 4.1).

Отметим, что сумма частот статистического ряда равна объему выборки. Часто статистический ряд составляют, используя относительные частоты вариант: вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru (m — количество различных вариант). Сумма относительных частот равна единице.

Полигоном относительных частот называют ломаную линию, отрезки которой соединяют точки с координатами (хi; hi).

вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru
а) б)

Рисунок 4.1. Полигон частот а), кумулятивная кривая б)

Эмпирическим аналогом графика интегральной функции распределения является кумулятивная кривая (кумулята). Для ее построения на оси ОХ откладывают значения вариант, на оси ОY – накопленные частоты или относительные частоты. Полученная плавная кривая называется кумулятой.

В том случае, если выборка представлена большим количеством различных значений непрерывной случайной величины, то группировку данных проводят в виде интервального вариационного ряда (ИВР). Для этого диапазон варьирования признака разбивают на несколько (5–10) равных интервалов и указывают количество вариант, попавших в каждый интервал.

Алгоритм построения интервального вариационного ряда.

1. Исходя из объема выборки (n), определить количество интервалов (k) (см. табл. 4.2).

Таблица 4.2.Рекомендуемое соотношениеобъем выборки-число интервалов

n 25–40 40–60 60–100 100–200 >200
k 5–6 6–8 7–10 8–12 10–15

2. Вычислить размах ряда: R=Xmax – Xmin

3. Определить ширину интервала: h=R/(k–1)

4. Найти начало первого интервала X0 = Xmin – h/2

5. Составить интервальный вариационный ряд.

Графическим изображением ИВР является гистограмма. Для ее построения на оси ОХ откладывают интервалы шириной h, на каждом интервале строят прямоугольник высотой m/h. Величина m/h называется плотностью частоты. Гистограмма является эмпирическим аналогом графика дифференциальной функции распределения.

Пример 4.3. Измерена масса тела 100 женщин 30 лет, получены значения от 60 до 90 кг. Построить интервальный вариационный ряд (табл. 4.3) и гистограмму.

Таблица 4.3. Интервальный вариационный ряд

Интервал Середина интервала m m/h
60–65 62.5 2.8
65–70 67.5 6.4
70–75 72.5 5.6
75–80 77.5 2.8
80–85 82.5 1.4
85–90 87.5 0.4

Рисунок 4.2. Гистограмма

Эмпирическая функция распределения находится по следующей формуле (отношение накопленных частот к объему выборки):

вариационный ряд. полигон частот и гистограмма эмпирическая функция распределения - student2.ru (4.1)

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ

Наши рекомендации