Трансформация ритма возбуждения
(лат. transformatio преобразование, превращение)
Синоним понятия — трансформация частоты следования импульсов.
Определение понятия:
Трансформация ритма возбуждений — одно из свойств проведения возбуждения в нервной системе (нервном центре), заключающееся в способности нейрона изменять ритм приходящих импульсов.[f]
Существует мнение, что способность трансформировать ритм возбуждения есть только у нейрона, причём у сомы нейрона. А, например, у скелетного миоцита эта способность отсутствует. При этом следует помнить, что скелетный миоцит, как и другие эффекторные клетки, могут играть роль частотного фильтра, т.е воспринимать частоты возбуждения до какой-то предельной.
Например, поступает импульс, идущий с частотой 25 Гц, а нейрон в ответ на это, возбуждаясь, генерирует 50 Гц, или наоборот, поступает 100 Гц, а выходят 40 Гц.
Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает пачкой импульсов. [g]
Выделяют несколько вероятных механизмов трансформации ритма возбуждения. [h]
В ряде случаев трансформация ритма возбуждения обусловлена возникновением длительного возбуждающего постсинаптического потенциала, на фоне которого развивается несколько спайков. [i]
Этот механизм трансформации ритма возбуждения возникновением длительного возбуждающего постсинаптического потенциала, объясняет принцип кодирования «сила стимула кодируется частотой импульсов, а не амплитудой»
Другим механизмом[j] возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. [k]
Как уже отмечалось выше способность трансформировать ритм возбудения приписывают только соме и отказывают в наличии этого свойства аксону. Аксону да, но не аксонному холмику.
От состояния аксонного холмика – порога раздражения – в значительной мере может зависеть направление (урежение или учащение) и выраженность трансформации частоты следования импульсов.
Временная суммация
!!! Говоря о трансформации ритма возбуждения лучше всё же говорить не об отдельной клетке (нейроне) или отдельной её части, а о модуле (колонке для коры), ансамбле нейронов, нерном центре.
Каждый модуль, или нейронный ансамбль, представляет собой совокупность локальных нейронных сетей, которая обрабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами структуры и ее внешними связями.[l]
Кодирование[m]
!!! Говоря о трансформации ритма возбуждения лучше всё же говорить не об изменении частоты, а об изменении паттерна.
Принцип доминанты
Был открыт А.А.Ухтомским на основании опытов проведенных в 1904-1911 году.
Изучая ответы скелетной мышцы кошки на электрические раздражения коры больших полушарий, он обнаружил, что при акте дефекации ответы мышцы прекращаются. Проанализировав этот факт, Ухтомский пришел к мнению о наличии в ЦНС явления доминанты.
Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, выполнение которых представляет наибольший "интерес" для организма, они в данный момент времени самые важные. Поэтому эти рефлексы реализуются, а другие - менее важные - тормозятся. А.А.Ухтомский назвал центры, участвующие в реализации доминантных рефлексов - "доминантным очагом возбуждения".
"Доминантный очаг" обладает рядом важных свойств:
1. он стойкий (его сложно затормозить),
2. интенсивность его возбуждения усиливается слабыми раздражителями:
3. этот очаг тормозит другие потенциальные доминантные очаги.
Банунг (нем. Bahnung) — «проторение пути» суммационный рефлекс[n]
Инерционность доминанты обусловлена длительными следовыми процессами, механизмы которых детально освещены.[o] В естественных условиях длительное следовое возбуждение может быть обусловлено:
1. суммацией ВПСП приходящих подпороговых импульсов,
2. синаптической потенциацией (облегчением) при ритмическом раздражении пресинаптических входов
3. изменение концентрации К+ в снаптической щели, который как деполяризатор усиливает вхождение Ca++ в пресинаптическое окончание,
4. метаболическими следами, связанными с влиянием медиаторов на циклазные системы постсинаптических клеток,
5. циклическими связями в ЦНС, способными обеспечить следовую самостимуляцию центров.
Отчего же именно данный очаг возбуждения является доминантным? Это определяется состоянием организма, например, гормональным фоном. У голодного животного доминантными рефлексами являются пищевые. Развитием представления о доминанте являются работы Анохина о функциональной системе, в которой есть блок, принимающий решение. Именно на основе мотиваций и памяти (следов) происходит принятие решения ("Что делать в данный момент времени") с учетом, конечно, результатов афферентного синтеза. В настоящее время идет интенсивное изучение конкретных процессов, лежащих в основе становления и формирования доминантных очагов в ЦНС.
Доминанта как один из основных принципов координационной деятельности ЦНС имеет важное значение в жизни человека. Например, именно благодаря доминанте возможно сосредоточение психической (внимание) и выполнение умственной или физической деятельности (в данном случае - это трудовая доминанта). В период поиска пищи, поедания возникает пищевая доминанта. Существуют половая, оборонительная доминанта.
Синаптическая задержка
Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. [p] При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка).[q]
Синаптическая задержка — замедление скорости распространения возбуждения в синапсе (межклеточном контакте) относительно скорости распространеия возбуждения в клетках возбудимых тканей (нервных, мышечных). Относительно малую скорость распространения возбуждения в синапсе связывают с длительностью процессов выделения медиатора из пресинаптического окончания, диффузии его по синаптической щели и процесса взаимодействия его с постсинаптической мембраной. [r]
В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. [s]
Скорость этих процессов в 10 и более раз меньше, чем скорость распространения возбуждения по нерву. С. з. в химических синапсах обычно равна 0,2—0,5 мс.
Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций — десятки миллисекунд. [t]