Понятие функции нескольких переменных. Геометрическое изображение функции двух переменных.
Рассмотрим два множества. Пусть множество D есть подмножество множества R2={(х,y)} на плоскости, т.е. DМ R2, а множество Z есть подмножество множества R на прямой, т.е.ZМ R.
Соотношение между множеством D и множеством Z, при котором каждому элементу (х,y) множества D соответствует один и только один элемент z множества Z, называется функцией двух переменных.
Множество D называется областью определения функции и обозначается D(z).
Для функции двух переменных вводится обозначение
z=f(х;y), (х;y) О D(z).
Геометрическим изображением функции двух переменных z=f(x; y) будет служить некоторая поверхность, которая может быть названа графиком этой функции (рис.). |
Предел и непрерывность ФНП.
Число А называется пределом функции нескольких переменных f в точке М0, если такое, что | f(M) – A| < ε для любой точки М из δ-окрестности М0.
Функция f называется непрерывной в точке М0 , если .
Частной производной функции нескольких переменных по какой-нибудь переменной в рассматриваемой точке называется обычная производная по этой переменной, считая другие переменные фиксированными (постоянными). Например, для функции двух переменных в точке частные производные определяются так:
,
.
. (1)
Если приращение (1) можно представить в виде , (2)
Где Аи В не зависят от и , а и стремятся к нулю при стремлении к нулю и , то функция называется дифференцируемой в точке , а линейная часть приращения функции (т.е. та часть , которая зависит от и линейно) называется полным дифференциалом (или просто дифференциалом) этой функции в точке и обозначается символом :
. (3)
Из определения дифференцируемости функции следует, что если данная функция дифференцируема в точке , то она в этой точке непрерывна.
Производная сложной ФНП.
Пусть М(х1, х2, ..., хm) внутренняя точка области определения функции u=f(x1, ..., xm). Пусть xk - приращение k-ой координаты в данной фиксированной т.М, ему соответствует частное приращение функции
xku f(x1, ..., xk-1, xk + xk, xk+1, ..., xm) - f(x1, ..., xm).
Рассмотрим отношение , которое зависит от xk и определено при всех достаточно малых xk, отличных от нуля.
Определение 1. Если существует , то он называется частной производной функции u=f(x1, ..., xm) в т. М(x1, ..., xm) по аргументу xk и обозначается одним из символов: . Таким образом, .
Замечание.Так как изменяется только xk + xk, т.е. k-я координата аргумента функции f, то частная производная является обыкновенной производной функции f как функции только k-й переменной (при фиксированных остальных переменных). Это позволяет вычислить частные производные по одной из переменных по обычным формулам дифференцирования, если зафиксировать все остальные переменные.
производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.
Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.
Рассмотрим функцию от аргументов в окрестности точки . Для любого единичного вектора определим производную функции в точке по направлению следующим образом:
Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора .
Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.
Связь с градиентом
Производную по направлению дифференциируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции на это направление, или иначе, как скалярное произведение градиента на орт направления:
Пусть задана функция f(x, y). Тогда каждая из ее частных производных(если они, конечно, существуют) и , которые называются также частными производными первого порядка, снова являются функцией независимых переменных x, y и может, следовательно также иметь частные производные. Частная производная обозначается через или fxx'', а через или fxy''. Таким образом,
,
и, аналогично,
, .
Производные fxx'',fxy'',fyx'' и fyy'' называются частными производными второго порядка. Определение:Частной производной второго порядка от функции z=f(x;y) дифференцируемой в области D,называется первая производная от соответствующей частной производной. Рассматривая частные производные от них, получим всевозможные частные производные третьего порядка: , , и т. д.
,где — орт направления.
Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке. Также видно, что значение производной по направлению не зависит от длины вектора .