Переход от изображения к оригиналу. Формулы разложения
Эти формулы позволяют найти оригинал, если изображение задано дробно-рациональной функцией:
Собственно формулу разложения можно применять только в том случае, когда высшая степень знаменателя выше высшей степени числителя. Если это не так, то сначала нужно поделить числитель на знаменатель, что и позволит привести F(p) к требуемому виду.
Пример:
,
.
Если m<n, то изображение записывают в виде: .
Характеристическое уравнение – выражение F2(p)=0 и, в зависимости от корней в оригинале, появляются соответствующего вида слагаемые, каждое из которых соответствует простейшей дроби.
Чтобы не искать коэффициенты дробей из систем уравнений, пользуются формулами разложения. Они имеют вид:
1) Каждому простому корню характеристического уравнения в оригинале, будет соответствовать слагаемое , где ;
2) Среди корней есть пара комплексно сопряженных: , . Можно воспользоваться предыдущей формулой для каждого корня, но проверка показывает, что коэффициенты перед exp оказываются к.с.ч. и можно упростить процедуру, записывая ответ сразу для двух корней в виде: , где - корень с положительной мнимой частью.
Пример:
, ,
,
, .
3) Среди корней есть кратные или одинаковые, в этом случае для группы кратных корней получаются сложные выражения, но если таких корней всего два, им в оригинале будет соответствовать такая запись:
Пример:
,
Из примеров видно, что корню pх=0 в оригинале соответствует величина, которую в классическом методе называют принужденной составляющей. Используя все вышеизложенное, можно в таком порядке рассчитывать переходной процесс.
(1) В схеме до коммутации находят и .
(2) Для схемы после коммутации записывают полную систему уравнений Кирхгофа и применяют к ней прямое преобразование Лапласа. В результате получают систему операторных уравнений.
(3) Из этой системы находят изображение искомой величины и переходят к оригиналу. Так обычно поступают, когда вся схема описывается одним уравнением. В сложных цепях этот путь не эффективен, так как он позволит убрать только один недостаток классического метода (поиск начальных условий). Второй недостаток – уравнения можно писать только по законам Кирхгофа – остался. Чтобы и его убрать, формулируют в операторной форме законы цепей и строят операторные схемы замещения.
Законы цепей в операторной форме
Применим к законам Кирхгофа для мгновенных значений прямое преобразование Лапласа.
Пример:
В некоторой схеме для некоторого узла имеем уравнение: . Изображение источника легко находится (см. начало операторного метода). Например, если .
Пусть в некотором контуре выполняется уравнение:
,
.
Тогда применяя преобразования Лапласа, получим: