Прогнозирование расчетных ситуаций

ОБЩИЕ ВОПРОСЫ МОДЕЛИРОВАНИЯ

Прогнозирование расчетных ситуаций

При эксплуатации мостовой конструкции действующие в ее элементах усилия все время изменяются вслед за изменением нагрузок. Для обеспечения надежной работы любого элемента нужно выполнить его расчет на такие сочетания внешних нагрузок, которые вызывают самые большие усилия в этом элементе за весь период эксплу­атации мостового сооружения. Задача определения усилий от за­данных нагрузок решается по известным правилам строительной механики и не представляет затруднений, если величины этих нагрузок известны. Трудность здесь состоит в том, что это - будущиенагрузки, и мы можем предсказать их величину лишь с той или иной степенью вероятности. Кроме того, для расчета элемента конструкции нужно знать механические харак­теристики материала, из которого будет выполнен этот элемент, а мы можем назначить лишь марку или класс этого материала с ожидаемыми, но не с конкретными значениями механических характеристик. Отсюда следует, что прогнозировать расчетные ситуации можно лишь опираясь на правила математической ста­тистики.

Общие сведения о моделировании систем

Виды моделирования

Моделированием называют исследование объектов познания на их моделях. Единая классификация видов моделирования затруднительна в силу многозначности понятия «модель». Здесь мы будем рассматривать только предметное моделирование, которое воспроизводит основные геометричес­кие, физические, динамические и функциональные характеристи­ки оригинала.

Моделирование называется физическим, если модель и ориги­нал имеют одинаковую физическую природу. В технике такое моделирование используется для определения на моделях тех или иных свойств как объекта в целом, так и отдельных его частей. К физическому моделированию прибегают не только по эконо­мическим соображениям, но и потому, что натурные испытания очень трудно, а часто невозможно осуществить, когда слишком велики (или малы) размеры натурного объекта или значения других его характеристик (температуры, давления, скорости протекания процесса и т. п.). Необходимыми условиями физического модели­рования при исследованиях конструкций является геометрическое и физическое подобие: геометрическая форма и размеры, а также физические характеристики оригинала и модели должны быть соответственно пропорциональны друг другу. Наличие такой пропорциональности позволяет производить пересчет получен­ных на модели экспериментальных данных на натуру путем их умножения на некоторый коэффициент подобия.

Аналоговое моделирование основано на аналогии явлений, имеющих различную физическую природу, но опи­сываемых одинаковыми математическими уравнениями. Так, для исследования процессов теплопроводности можно построить ги­дравлическую модель, в которой температура будет моделиро­ваться уровнем воды в сосудах, теплоемкость - их площадью поперечного сечения, а тепловое сопротивление -гидравличес­ким сопротивлением трубок, соединяющих сосуды. Для исследо­вания лучистого (радиационного) переноса теплоты часто приме­няют метод светового моделирования, при котором потоки теп­лового излучения заменяют подобными им потоками светового излучения. Наибольшее распространение получило электрическое моделирование механических и других систем, поскольку мон­тировать электрическую цепь и управлять параметрами ее эле­ментов гораздо проще, чем в иных системах.

Поясним все сказанное на простейших примерах.

Допустим, что при исследовании движения тела с массой т требуется установить связь между силой F и скоростью тела, изменяющейся по некоторому закону v=f(t).Построив модель этой системы, можно с помощью приборов фиксировать вели­чины Прогнозирование расчетных ситуаций - student2.ru , Прогнозирование расчетных ситуаций - student2.ru для каждого значения массы mi, при этом не обязательно знать, что данный процесс протекает в соответствии с законом Ньютона

Прогнозирование расчетных ситуаций - student2.ru (1.6)

Если физическое моделирование такого процесса затруднено, то можно организовать его электрическое моделирование, собрав электрическую цепь, напряжение и и сила тока I в которой связаны зависимостью

I=C(du/dt). (1.7)

Подбирая емкости конденсатора С, соответствующие в некото­ром масштабе массам т механической системы, и задавая закон изменения напряжения в соответствии с функцией изменения скорости тела v=f(t), можно с помощью электроизмерительных приборов определять значения Ii, ui, соответствующие в заданном масштабе искомым значениям Fi, vi. Электрическое моделирова­ние механической системы, не требующее изготовления макетов и использования сложных измерительных приборов, обычно зна­чительно проще и дешевле физического моделирования.

Уравнения (1.6) или (1.7) могут быть исследованы непосредст­венно путем их интегрирования в аналитической форме, если функция v=f(t) имеет простой вид, или же численными методами. Это будет математическое моделирование механической (1.6) или электрической (1.7) системы.

Электрические модели могут быть включены в состав слож­ных математических моделей, если решение тех или иных задач трудно выполнить математически. В этом случае в алгорит­ме математической модели предусматривают обращение к ап­паратным средствам, выполняющим электрическое моделиро­вание.

Виды математических моделей

Разнообразие систем и решаемых задач не позволяет дать четкую классификацию математических моделей по одному при­знаку. Их можно классифицировать по характеру отображаемых свойств объекта, принадлежности к иерархическому уровню, сте­пени детализации описания, способу представления свойств объекта и другим признакам. Мы условимся делить математические модели на два класса: структурные и функциональные, а последние, в свою очередь, будем подразделять на непрерывные и дискретные. Те и другие модели могут быть детерминированными и стохастическими. Кроме того, математическое моделирование может отображать как функциональное взаимодействие элементов системы, так и развитие процессов ее функционирования, и в этом смысле удобно рассматривать аналитическое, имитационное и комбини­рованное моделирование систем.

Подготовка данных и обработка результатов

Моделирования систем

Исходные данные для моделирования и его результаты часто представляют собой массивы случайных чисел. Это относится как к составляющим вектора внешних сил (постоянная нагрузка, временная нагрузка и др.), так и к выходным данным, например к результатам многократных повторений вычислительного эксперимента (прогонов модели). Такие массивы должны быть упорядо­чены с целью получения данных, удобных для моделирования или разработки практических рекомендаций по результатам мо­делирования. Обработку массивов случайных чисел производят по правилам математической статистики.

Остановимся на тех правилах, которые представляют непосредственный интерес для решения следующих задач:

• как подобрать подходящий теоретический закон распреде­ления случайных чисел с тем, чтобы использовать его для генерации случайных чисел при моделировании систем или для прогнозирования наибольших (наименьших) возмож­ных значений этих чисел;

• как правильно прогнозировать наибольшие или наимень­шие значения случайных чисел;

• как исключить ошибки получения экспериментальных дан­ных и как отсеивать ложные результаты;

• как найти минимальное, но необходимое число опытов, в том числе прогонов модели, для получения достоверных результатов;

• можно ли объединять две группы случайных величин в одну общую группу.

Критерии согласия

Для подбора подходящего теоретического распределения пре­жде всего следует построить экспериментальную кривую плот­ности распределения, после чего визуально выбрать похожую кривую из известных типов теоретических распределений. При построении экспериментальной кривой данные ран­жируют в порядке возрастания, разбивают на группы, строят гистограмму, а по ней - экспериментальную кривую. Разумеет­ся, что при наличии оснований отдать предпочтение тому или иному теоретическому закону распределения необходимость в построении экспериментальной кривой отпадает.

Выбрав тип предполагаемого теоретического распределения, выдвигают нулевую гипотезу о взаимном соответствии теорети­ческого и экспериментального распределений, проверяют ее на заданном уровне значимости, используя критерии согласия.

При больших выборках (n >100) предпочтение следует отда­вать критерию согласия Пирсона. Иногда этот критерий исполь­зуют при существенно меньших выборках. Критерий Колмого­рова— Смирнова дает хорошие результаты при n>30 и удов­летворительные при 100 > n >10. При n<10 лучшие результаты дает критерий Крамера - фон Мизеса. Эти рекомендации весьма приблизительны, так как каждый из критериев имеет свои сильные и слабые стороны, и от­носительно выбора между ними можно дать лишь самые общие указания.

Критерий Пирсона(хи-квадрат) применим только к сгруп­пированным данным. Рекомендуется, чтобы численность каждой группы (интервала) была не меньше 5. Если это не так, то смежные малочисленные группы следует объединять с сосед­ними.

Разбив исходные данные на т интервалов (групп), для каж­дого интервала вычисляют:

экспериментальные частоты рi* = ni /n, где ni - количество дан­ных, попавших в i-й интервал, п - общее количество данных (объем выборки);

теоретические частоты Прогнозирование расчетных ситуаций - student2.ru , найденные по таб­лицам или формулам для выбранного типа теоретического рас­пределения; экспериментальную величину

Прогнозирование расчетных ситуаций - student2.ru (1.54)

По таблицам квантилей распределения χ2 при заданном уровне значимости β (обычно 5%) и известном числе степеней свободы f находят теоретическое значение χ2. Число степеней свободы f равно количеству интервалов минус число независимых условий (связей), наложенных на эксперименталь­ные частоты рi*. Примерами таких условий могут быть: равенст­во 1 суммы всех частот (такое условие накладывается всегда), совпадение статистического среднего с гипотетическим, совпаде­ние дисперсий и т. п. Следовательно f=т–1-r, где т - число интервалов, 1 - отмеченное выше условие, r -число парамет­ров, определяемых из опытных данных. Так, если предполага­емое распределение нормальное, то оценивают два параметра (математическое ожидание и среднее квадратическое отклоне­ние), поэтому f=т-1-r=т-1-2=т-3; при распределении по закону Пуассона, содержащему лишь один параметр λ, будем иметь r=1, поэтому f=т-1-2 =т—2. Если дополнительные условия (кроме первого) не наложены, то f = m -1.

При выполнении условия

Прогнозирование расчетных ситуаций - student2.ru (1.55)

считается, что при заданном уровне значимости (β=5%) функция распределения согласуется с экспериментальными данными.

Более жесткие требования по уровню значимости следует выдвигать с осторожностью. Увеличение доверительной вероят­ности уменьшает вероятность того, что незначимое различие будет принято за значимое и правильная функция будет отверг­нута. Однако это увеличивает вероятность того, что значимое различие будет принято за незначимое.

Во избежание возможных ошибок первого и второго рода, в особенности, если согласование теоретических и эмпирических частот «слишком хорошее», следует проявлять осторожность. Например, можно повторить опыт, увеличив число наблюдений, воспользоваться другим критерием согласия, вычислить асим­метрию и эксцесс и сопоставить их с известными для данного распределения.

Критерий Колмогорова - Смирноваопределяется разностью максимальных абсолютных значений статистической функции распределения F* (х) и соответствующей теоретической функции распределения F(x), т. е.

Прогнозирование расчетных ситуаций - student2.ru (1.56)

Смирновым Н. В., а затем Колмо­горовым А. Н. было доказано, что ка­кой бы вид ни имела функция F(х), при неограниченном возрастании чи­сла независимых наблюдений п веро­ятность неравенства

Прогнозирование расчетных ситуаций - student2.ru (1.57)

стремится к пределу

Прогнозирование расчетных ситуаций - student2.ru (1.58)

Для практического использования критерия составлена табли­ца квантилей, определенных из соотношения k (λа)=α, где функция распределения записана в несколько ином виде:

Прогнозирование расчетных ситуаций - student2.ru

Схема применения критерия Колмогорова — Смирнова сле­дующая.

По результатам п наблюдений строится (рис.1.18) статисти­ческая функция распределения F* (х).

Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru

Рис. 1.18. К использова­нию критерия Колмого­рова

На том же графике наносится предполагаемая теоретическая функция распределения F(x).

Определяется максимальная величина модуля разности орди­нат D и вычисляется величина λ=D Прогнозирование расчетных ситуаций - student2.ru .

С помощью таблицы по заданному уровню значимости β (до­верительной вероятности α) находится значение λа. Если λ<λа, то теоретическое и экспериментальное распределения согласуются на заданном уровне значимости.

Планирование эксперимента

Планирование эксперимента позволяет оптимизировать тру­довые, временные и материальные затраты на проведение ис­следований, обеспечить их наиболее эффективное выполнение, а отсутствие соответствующего плана может существенно повы­сить трудоемкость исследований или сделать экспериментальную программу полностью безрезультатной.

Исторически теория планирования эксперимента начала раз­виваться с факторного планирования, основы которого зароди­лись еще в 30-х годах XXстолетия. Основы этой теории состоят в построении экономичных планов, по результатам эксперимен­тальных измерений в точках которых можно делать статистичес­кие выводы о неизвестных параметрах функций регрессии, при­чем делать это на основе четко формализованных процедур. Факторное планирование включает построение полных и дроб­ных факторных планов, ортогональных латинских квадратов и сбалансированных блок-схем. В отличие от классического экс­перимента, в котором влияние различных значений входных переменных на результаты исследования рассматривается по одно­му, при факторном планировании эти значения одновременно комбинируются в разных вариантах. Это позволяет дать более точные оценки неизвестных параметров регрессии при равном числе измерений [19].

К настоящему времени сложилась стройная теория планиро­вания эксперимента, оперирующая с достаточно сложным мате­матическим аппаратом, имеющая свою терминологию. Рассмотрим основные положения этой теории, позволя­ющие организовать процесс моделирования не очень сложных систем. При этом ограничимся рассмотрением двухуров­невых планов, в которых влияние на результат эксперимента каждой из входных переменных изучается на двух уровнях, т. е. при наименьшем и наибольшем значениях этой переменной в пределах исследуемой области. Двухуровневые планы в силу ряда преимуществ получили наибольшее распространение при факторном планировании эксперимента.

Поскольку математические методы планирования экспериме­нта основаны на кибернетическом подходе, наиболее подходящей моделью эксперимента является «черный ящик», для которого известно лишь то, что подается на его вход, и то, что получается на выходе, а устройство этого ящика значения не имеет. Соответ­ственно мы будем иметь два типа переменных (входных и выход­ных), которые называют факторами и откликами. Для выясне­ния различий между ними рассмотрим простой эксперимент, в котором рассматриваются лишь две переменные х и у и целью которого является ответ на вопрос: как при изменении х будет изменяться y?В этом случае х - фактор, а у - отклик. В лите­ратуре встречаются другие термины: для фактора - режим, не­зависимая переменная, входная переменная, экзогенная перемен­ная; для отклика - реакция, выход, зависимая переменная, пере­менная состояния, эндогенная переменная. Подобная терминоло­гия возникла в связи с тем, что первые исследования с применени­ем статистических экспериментов проводились в сельском хозяй­стве, биологии, а затем стремительно вторгались в другие ниши, пополняясь там терминами, наиболее близкими и понятными читателям.

Каждый фактор хi может принимать в эксперименте одно из нескольких значений, называемых уровнями. Каждому уровню соответствует определенная точка в многомерном пространстве, а множество таких точек образует поверхность отклика. На рис.1.19 показана поверхность отклика для двухфакторного экспери­мента. Факторами являются переменные х1 и х2. В точках 1, 2, 3, 4 эти факторы принимают определенные значения, которым отвечают соответствующие точки на поверхности отклика.

Прогнозирование расчетных ситуаций - student2.ru

Рис. 1.19. Поверхность отклика.

Прогнозирование расчетных ситуаций - student2.ru (1.59)

Конфигурация поверхности отклика, следовательно, функция (1.59) не известна. Целью эксперимента является либо описание этой поверхности (хотя бы приближенное) в интересной для исследо­вателя области варьирования факторов, либо определение экст­ремального значения отклика. Вторая задача может быть сведена к пошаговому выполнению первой, поэтому на начальном этапе нас будет интересовать только поиск аналитического выражения, близкого к искомой функции (1.59) в заданной области. Этот поиск осуществляют на основе обработки экспериментальных данных в точках 1, 2, 3, 4 (см. рис. 1.19) факторного пространства.

Дробные реплики

Число опытов в полном факторном эксперименте быстро возрастает с ростом числа факторов. Так, при трех факторах будем иметь 23=8 опытов, при 5 факторах - 25=32 опыта, а при 8 факторах уже 28=256 опытов. Это вызывает необходи­мость разработки методов отбора части переменных, наиболее существенно влияющих на поверхность отклика. Поэтому, хотя полный факторный план 2k является удобным с точки зрения простоты проведения анализа параметров функции регрессии, тем не менее при большом числе факторов его применяют редко. При трех и более факторах количество опытов можно существен­но сократить за счет потери части информации, не очень сущест­венной при построении линейных моделей. Для этого вместо плана 2k следует использовать дробный фактор­ный план 2k - p (2k - p≥+1), который предназначен для реализации 2k -p опытов. Для построения дробных планов (реплик) использу­ют матрицы полного факторного эксперимента. Дробные планы создают делением числа опытов полного факторного экспериме­нта на число, кратное двум. Так получают 1/2 реплики (полуреп­лику), 1/4 реплики (четвертьреплику) и т. д.

Вначале рассмотрим линейную функцию регрессии, завися­щую от трех факторов:

Прогнозирование расчетных ситуаций - student2.ru (1.67)

Для оценки четырех коэффициентов b0, b1, b2, b3 требуется провести четыре опыта, а проведение полного факторного экс­перимента, состоящего из восьми опытов, позволяет несмещенно оценить не только общее среднее b0 и главные эффекты b1, b2, bз, но также и всевозможные взаимодействия первого и второго порядков, т. е. все параметры неполной кубической модели

Прогнозирование расчетных ситуаций - student2.ru (1.68)

содержащей восемь коэффициентов. Следовательно, восемь опы­тов, поставленных для оценки коэффициентов линейной модели (1.67), будут содержать в два раза больше информации, чем требуется.

Для оценивания параметров функции регрессии (1.67) можно построить план, предназначенный для проведения не восьми, а четырех опытов. Для этой цели факторы x1 и х2 следует варьировать, как в плане 22, а в качестве уровня фактора х3 нужно выбрать значение взаимодействия, т. е. х3 = x1x2. Получим план, определяемый матрицей, приведенной в табл. 1.4.

Таблица 1.4

№ опыта Матрица плана
  x0 x1 x2 x3
+ 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1

Рассмотрим вопрос построения дробных реплик более под­робно. Вернемся к функции регрессии (1.68). Матрица плана этой модели приведена в табл. 1.5.

Рассмотрим эту таблицу более внимательно и обратим вни­мание, что второй столбец таблицы совпадает с девятым, тре­тий - с восьмым, четвертый - с седьмым, пятый - с шестым. Следовательно, при использовании этого плана нет различий между х0 и х1 х2 x3; x1 и х2 х3; х2 и x1 x3; х3 и x1x2, т. е.

Прогнозирование расчетных ситуаций - student2.ru (1.69)

Таблица 1.5

Матрица плана
опыта x0 x1 x2 x3 х1 x2 x1 x3 x2 x3 x1 x2 x3
3
+1 +1 +1 +1 +1 -1 +1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 -1 -1 +1 + 1 +1 -1 -1 +1 -1 +1 -1 +1 +1 +1 +1

На этом основании можно утверждать, что вместо отыскания оценок восьми параметров функции регрессии (1.68) можно найти оценки лишь четырех смешанных коэффициентов:

Прогнозирование расчетных ситуаций - student2.ru (1.70)

При этом главные эффекты, включая общее среднее, оценивают­ся независимо друг от друга, но смешиваются соответственно с эффектами взаимодействий второго и первого порядка. Если постулируется линейная модель (1.67), то эффекты взаимодейст­вий считаются незначительными, а смешанные коэффициенты (1.70) превращаются в параметры модели (1.67).

Таким образом, полный факторный эксперимент 23 при по­стулировании линейной модели можно рассматривать как сово­купность двух полуреплик. Представленный в табл. 1.5 план называют полурепликой или планом 23 -1, полученным из полно­го факторного плана 23 путем приравнивания единице произведе­ния x1 x2 x3, т. е.

Прогнозирование расчетных ситуаций - student2.ru (1.71)

Это соотношение называется определяющим для данной полуреп­лики. Другая полуреплика 23 -1 получится из определяющего соотношения x1 x2 x3 = - 1, т. е. если уровни фактора х3 устанавли­вать в соответствии с равенством х3= - x1 x2.

Пример.План полного факторного эксперимента и его результаты записаны в левой части (столбцах 1...6) табл. 1.6. Требуется составить уравнения регрессии для полного факторного эксперимента и для его дробных реплик, если известно, что функция отклика линейна (либо постулируется ее линейность).

Таблица 1.6

№ опыта Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru y Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru Прогнозирование расчетных ситуаций - student2.ru
+1 -1 -1 -1 +1 +1 +1 -1
+1 +1 -1 -1 -1 -1 +1 +1
+1 -1 +1 -1 -4 -1 +1 -1 +1
+1 +1 +1 -1 +1 -1 -1 -1
+1 -1 -1 +1 +1 -1 -1 +1
+1 +1 -1 +1 -1 +1 -1 -1
+1 -1 +1 +1 -1 -1 +1 -1
+1 +1 +1 +1 +1 +1 +1 +1

Решение. Запишем уравнение регрессии для линейной поверхности отклика

Прогнозирование расчетных ситуаций - student2.ru (1.72)

Коэффициенты bi будем определять по формуле (1.62) в соответствии с приемами, указанными в пояснениях к этой формуле.

Вначале определим коэффициенты регрессии, используя данные полного фак­торного эксперимента (левую часть табл. 1.6).Имеем:

Прогнозирование расчетных ситуаций - student2.ru (1.73)

Построим дробные реплики, для чего заполним правую часть табл. 1.6 (столбцы 7...10) и выберем строки, у которых 10-й столбец имеет одинаковые знаки. В результате получим две полуреплики:

Таблица 1.7

№ опыта x0 x1 x2 x3 Y
Первая Полуреплика
2 + 1 +1 -1 -1
+ 1 -1 +1 -1 -4
+ 1 -1 -1 +1
+ 1 +1 +1 +1
Вторая полуреплика
+ 1 -1 -1 -1
+ 1 +1 -1 -1
+ 1 +1 -1 +1
-1 -1 +1 +1

Определим коэффициенты регрессии по дробным репликам.

Для первой полуреплики будем иметь: b0 = (16—4+8-12)/4=8; b1 = (16+4 — -8 + 12)/4 = 6; b2 = (-16-4-8 + 12)/4=-4; b3 = (-16 + 4+8-(-12)/4=2. Для вто­рой полуреплики b0=(4+8+20+0)/4=8; b1 = (-4 + 8+20-0)/4=6; b2 = (-4 + + 8-20 + 0)/4=-4; b3 = (-4-8 + 20)/4 = 2.

Как и следовало ожидать, во всех трех случаях для линейной поверхности отклика получены одинаковые результаты.

На рис. 1.20 приведена схема полного трехфакторного эксперимента и его полуреплик. Цифрами отмечены номера опытов с указанием в скобках координат факторов x1, x2, х3. Точки 2, 3, 5, 8 соответствуют первой полуреплике, а цифры 1, 4, 6, 7 - второй. Обратите внимание, что каждая из полуреплик наиболее полно охватывает опытные точки факторного пространства.

При большом числе факторов т для оценивания параметров линейной функции регрессии (1.65) можно строить дробные репли­ки высокой степени дробности [19]. Так, при т = 7 можно постро­ить дробную реплику из полного факторного плана 23 для пер­вых трех факторов, приравняв четыре остававшихся фактора к двухфакторным и трехфакторному взаимодействиям трех дру­гих факторов, положив, например

Прогнозирование расчетных ситуаций - student2.ru (1.74)

Такую реплику записывают как 27 - 4.

Прогнозирование расчетных ситуаций - student2.ru

Рис. 1.20. Схема трехфакторного эксперимента

В общем случае дробную реплику обозначают через 2т - p, если р факторов приравнены к произведениям остальных т - р фак­торов, уровни которых выбраны согласно полному факторному плану. Дробную реплику 2 т - р можно строить различными спо­собами. Для анализа системы смешивания коэффициентов пользуются понятиями генерирующих и определяющих соотно­шений.

Генерирующими называют соотношения, с помощью которых построена дробная реплика. Так, для реплики, представленной в табл. 1.5, генерирующим является соотношение x3 = x1x2, а это указывает, что фактор х3 занимает в матрице столбец, соответст­вующий взаимодействию х1х2. Для указанной выше реплики 27 - 4генерирующим является соотношение (1.74).

Определяющим соотношением (определяющим контрастом) называют равенство, в левой части которого стоит единица, а в правой — какое-либо произведение факторов. Для дробной реплики 2т - р можно получить р различных определяющих соот­ношений из генерирующих путем умножения обеих частей по­следних на их левые части с последующей заменой (xi)2 на 1 (i=1,..,т). Другие определяющие соотношения получаются путем перемножения ранее полученных и выделения среди них новых. Например, для реплики (табл. 1.5) определяющим является соот­ношение (1.71).

Построим определяющие соотношения для реплики 27 - 4, за­даваемой генерирующими соотношениями (1.74). Умножая обе части равенств (1.74) на их левые части, получаем четыре опреде­ляющих соотношения:

Прогнозирование расчетных ситуаций - student2.ru (1.75)

Попарное перемножение этих четырех соотношений дает шесть новых:

Прогнозирование расчетных ситуаций - student2.ru (1.76)

Перемножение каждой тройки из четырех соотношений (1.75) дает еще три определяющих соотношения:

Прогнозирование расчетных ситуаций - student2.ru (1.77)

Наконец, перемножая все четыре соотношения (1.75), получаем

Прогнозирование расчетных ситуаций - student2.ru (1.78)

Легко понять, что кроме (1.75)...(1.78), других определяющих соотношений для рассмотренной реплики 2+ 7 - 4 нет.

Знание определяющих соотношений позволяет найти всю си­стему совместных оценок без изучения матрицы планирования дробной реплики. Для того чтобы определить, с какими взаимо­действиями смешано данное, нужно на него умножить обе части всех определяющих соотношений.

Определим, например, с какими взаимодействиями смешан главный эффект b3 в дробной реплике 27 - 4, определяемой генери­рующими соотношениями (1.74). Для этого умножим все опреде­ляющие соотношения (1.75)...(1.78) на х3. Получим

Прогнозирование расчетных ситуаций - student2.ru

Прогнозирование расчетных ситуаций - student2.ru

Прогнозирование расчетных ситуаций - student2.ru

Следовательно, главный эффект b3 смешан с эффектами вза­имодействий первого порядка Прогнозирование расчетных ситуаций - student2.ru

с эффектами взаимодействий второго порядка Прогнозирование расчетных ситуаций - student2.ru

третьего порядка Прогнозирование расчетных ситуаций - student2.ru

четвертого порядка Прогнозирование расчетных ситуаций - student2.ru

и пятого порядка Прогнозирование расчетных ситуаций - student2.ru

В конкретной практической ситуации для выбора подходящей дробной реплики полного факторного плана необходимо исполь­зовать все априорные сведения теоретического и интуитивного характера об объекте планирования с целью выделения тех фак­торов и произведений факторов, влияние которых на результаты измерений существенно. При этом смешивание нужно произво­дить так, чтобы общее среднее bo и главные эффекты b1, ..., bт были смешаны с эффектами взаимодействий самого высокого порядка (так как обычно они отсутствуют) или с эффектами таких взаимодействий, о которых известно, что они оказывают несущественное влияние на результаты измерений. Отсюда сле­дует, в частности, что недопустимо произвольное разбиение пол­ного факторного плана 23 на две части для выделения полурепли­ки 23-1.

Качество дробного факторного плана иногда характеризуют с помощью разрешающей способности плана, которая равна на­именьшему числу символов в правых частях определяющих соот­ношений. В частности, для плана разрешающей способности III ни один главный эффект не смешан ни с каким другим главным эффектом, но главные эффекты смешаны с эффектами двухфакторных взаимодействий. Для плана разрешающей способности IV главные эффекты не смешаны друг с другом и с эффектами двухфакторных взаимодействий, но последние друг с другом смешаны. Для плана разрешающей способности V главные эф­фекты и эффекты двухфакторных взаимодействий не смешаны, но последние смешаны с эффектами трехфакторных взаимодейст­вий. Все три рассмотренные выше дробные реплики имеют раз­решающую способность III.

1.4.3. Общая схема планирования эксперимента

Крутое восхождение

Рассмотренные выше приемы позволяют аппроксимировать поверхность отклика, если она в пределах исследуемой области линейна или близка к линейной. В общем случае поверхность отклика может иметь самую причудливую форму, напомина­ющую гористую местность с холмами и оврагами, с вершинами и впадинами. Задачей эксперимента часто является поиск экст­ремальных значений поверхности отклика: самой высокой вер­шины или самой глубокой впадины. Такую задачу решают мето­дом случайного или целенаправленного поиска. Случайный поиск или простой перебор точек факторного пространства требует очень больших затрат ресурсов, поэтому используют целенаправ­ленный перебор точек факторного пространства. Схема такого перебора («крутого восхождения») показана на рис. 1.21.

Вначале случайным образом выбирают достаточно малую область факторного пространства. Для этой области планируют дробный факторный эксперимент, проводят первую серию (обыч­но из четырех) опытов и строят линейную функцию отклика. Цель этих опытов - еще не поиск экстремального значения фун­кции, а предварительное отыскание направления дальнейшего поиска. Получив приближенное линейное уравнение, находят его градиенты (векторы производных по каждой переменной в каж­дой точке, или, другими словами, углы наклона поверхности в каждом направлении) и выбирают следующую область для приближенных исследований. В этой области вновь ставят серию опытов и определяют коэффициенты нового линейного прибли­жения. Повторяя такие операции, достигают, наконец, вершины поверхности отклика, т. е. такой области факторного пространст­ва, в которой по всем направлениям функция отклика практичес­ки не изменяется. В этой области проводят полный факторный эксперимент с определением не только линейных коэффициентов регрессии, но и всех учитываемых взаимодействий.

Прогнозирование расчетных ситуаций - student2.ru

Рис. 1.21. Крутое восхождение

Направление градиента линейного приближения геометричес­ки представляет собой прямую, перпендикулярную изолиниям, т. е. это самый крутой склон (кратчайший путь), ведущий от данной точки к вершине, что и определило название метода. Рассмотренный подход был предложен в 1951 г. Боксом и Виль­соном.

Тот факт, что функция отклика в окрестности исследуемой точки почти не изменяется, еще не означает, что мы находимся вблизи точки максимума. Мы можем при этом находиться на медленно поднимающемся гребне или на гребне постоянной высоты. Возможно также, что достигнута седловидная точка, являющаяся максимальной точкой по одному направлению и ми­нимальной — по другому. Наконец, мы можем найти точку не глобального, а локального максимума. Надо заметить, что в ре­альных условиях, как правило, поверхность отклика имеет один максимум, и это упрощает дело.

Как уже отмечалось, в точке максимума следует проводить полный факторный эксперимент с учетом взаимодействий фак­торов. Более достоверные результаты дает к

Наши рекомендации