Общие сведения о методах решения задач теории телетрафика
Методы математической статистики применяются при оценке результатов наблюдений за параметрами потоков вызовов и показателями качества обслуживания в действующих системах распределения информации, а также при моделировании таких систем.
При анализе, синтезе и оптимизации структурно-сложных систем распределения информации кроме вероятностных методов используются комбинаторные и алгебраические методы, теория множеств, принципы системного подхода (системотехники). Основными методами решения задач в теории телетрафика являются аналитические, численные и метод статистического моделирования.
Аналитические методы позволяют решать задачи теории телетрафика в тех случаях, когда структура системы, характеристики потока и дисциплина обслуживания относительно просты. При этом рассматриваются все возможные состояния системы, определяемые положением каждой точки коммутации или другого элемента системы при наиболее подробном ее описании. Такие состояния называются микросостояниями системы. Каждый раз, когда поступает новый вызов, заканчивается какая-либо фаза работы управляющего устройства по установлению соединения или заканчивается соединение, система меняет свое микросостояние. Для каждого микросостояния записывается уравнение статистического равновесия. Решая систему таких уравнений, находят точное решение задачи в пределах принятой модели.
Наиболее универсальным методом, который пригоден для решения задач практически любой сложности, является метод статистического моделирования. Метод заключается в построении математической модели системы, реализация которой осуществляется в виде программы для ЭВМ.
Во многих случаях разумное сочетание аналитических и численных методов с методом статистического моделирования позволяет детально проанализировать исследуемую систему. При малых значениях параметров системы удается получить решение точными аналитическими методами и проанализировать предельные случаи при асимптотическом поведении характеристик изучаемой системы. Полученные сведения дополняются результатами статистического моделирования в области реальных значений параметров системы.
Оценивая результаты исследований систем распределения информации любыми математическими методами, следует помнить, что математика оперирует не с реальными системами, а с их математическими моделями. Так как математические модели всегда лишь приближенно описывают реальные системы, то никакие математические методы не могут заменить исследований, проводимых на реально функционирующих системах.
3.Потоки вызовов Основные понятия
Потоком вызовов (в общем случае . событий) называется последовательность вызовов, поступающих через какие-либо интервалы или в какие-либо моменты времени. например поток телеграмм, поток писем, поток неисправностей отдельных коммутационных устройств или телефонных сооружений в целом, поток информации
Следует различать детерминированный и случайный потоки вызовов. Детерминированный поток вызовов . последовательность вызовов, в которой вызовы поступают в определенные, строго фиксированные неслучайные моменты или через определенные, строго фиксированные, неслучайные промежутки времени.. последовательность вызовов, в которой вызовы поступают в определенные, строго фиксированные неслучайные моменты или через определенные, строго фиксированные, неслучайные промежутки времени. Детерминированные потоки являются частным случаем случайных потоков и на практике встречаются редко. Примерами их могут служить: поток сеансов связи с искусственными спутниками Земли, поток поступления деталей и выхода изделий ритмично работающего завода и т. п. Строго говоря, даже в таких потоках часто имеют место случайности. В связи с этим в теории телетрафика основное внимание уделяется рассмотрению случайных потоков вызовов.
Потоки вызовов подразделяются на неоднородные и однородные. В неоднородном потоке вызовов каждый вызов имеет две и более характеристики. Однородный поток вызовов характеризуется последовательностью, определяющей только закономерность поступления вызовов. Ограничимся рассмотрением потоков, в которых на любом конечном отрезке времени поступает конечное число вызовов и математическое ожидание числа поступающих вызовов также является конечной величиной. Такие потоки называются финитными.
Математическое ожидание числа вызовов, поступающих в интервале времени [0, t), называется ведущей функцией потока