Минимизация функции методом квайна

Максимальный интервал Ia , который не содержится ни в каком другом интервале Ia Ë Iк

где Iк - все интервалы функции, кроме Ia .

Рассмотрим функцию, заданную в СНФК:

N Ki F

В левой части двоичный эквивалент конституент,а в правой присутствует ли она в функциональном представлении или нет.

Кроме интервалов,представленные конституентами выделим другие интервалы более крупные.

минимизация функции методом квайна - student2.ru минимизация функции методом квайна - student2.ru 001 0х1

011 х11

100 1х0 - максимальные интервалы относительно конституент.

110 11х

Лемма.

Если в представление функции включен не максимальный интервал, то этот интервал может быть преобразован с помощью вычеркивания первичных термов.

Доказательство:

Исходя из определения , в функциональном представлении присутствует интервал, содержащий не максимум,а состоящий из некоторых первичных термов не максимальный интервал. Следовательно, максимальный интервал мажет быть получен вычеркиванием незначительных термов из немаксимального интервала.

М = А + В минимизация функции методом квайна - student2.ru = А + В

В – максимальный интервал

В минимизация функции методом квайна - student2.ru Ì В - не максимальный интервал

Вычеркиванием терма минимизация функции методом квайна - student2.ru – получим максимальный интервал.

Тупиковой формой –называется нормальная форма Кантора, из которой не может быть вычеркнут ни один терм без изменения представления функции.

Минимальной формой – называется тупиковаяформа, минимальной сложности

Выражения для максимальных интервалов называются простыми импликантами.

ТЕОРЕМА.

Все тупиковые ,а следовательно и минимальные формы содержатся в объединении всех простых импликант.

Доказательство:

Из определения следует,что если вНФК присутствует неминимальный интервал ,то она не является тупиковой и не является минимальной.

Следовательно, тупиковой и минимальной формой есть объединение некоторых простых импликант из множества всех простых импликант.

Согласно вышеуказанной теореме 1-й шаг метода Квайна состоит в выделении простых импликант функции и составлении таблицы.

Строки соответствуют простым импликантам.

Столбцы – конституентам функции.

 
0х1      
х11      
1х0      
11х      

Если конституента содержится соответственном максимальном интервале, то в клетке ставится 1, если нет, то клетка остаётся пустой.

2-й шаг

Состоит в том, что из множества простых импликант составляются всевозможные подмножества, обладающие свойствами :

1. Элементы подмножества суммарно покрывают все конституенты функции.

2. При вычеркивании любого элемента подмножества свойство 1 не выполняется.

Подмножество, удовлетворяющее свойствам называется минимальными покрытиями таблицы Квайна.

ТЕОРЕМА

Возможные минимальные покрытия таблицы Квайна представляют все тупиковые формы функционального представления, среди которых содержатся и минимальные формы.

Доказательство:

Необходимость следует из того, что тупиковые и минимальные формы есть объединение простых импликант. Достаточность следует из того , что не возможно вычеркнуть простую импликанту, а следовательно любой первичный термин, без нарушения покрытия всех конституент функции.

Наши рекомендации