Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.
Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:
Из этой системы находятся коэффициенты а0, а1, а2, …, аn.
В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).
Можно использовать экспоненциальный полином:
Второй метод: метод аппроксимации по Тейлору. В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.
Аппроксимация по Батерворту: выбирается простейший полином:
В этом случае можно определить максимальное отклонение ε на краях диапазона.
Аппроксимация по Чебышеву: является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наибольшее по абсолютной величине отклонение полинома f(x)степени п от непрерывной функции ξ(х) будет минимально возможным, если в интервале приближения а ≤ х ≤ b разность
f(x) - ξ(х) не меньше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f(x) - ξ(х) = L > 0 и наименьшие f(x) - ξ(х) = -L значения (критерий Чебышева).
Во многих прикладных задачах находит применение полиномиальная аппроксимация по среднеквадратическому критерию близости, когда параметры аппроксимирующей функции f(x) выбираются из условия обращения в минимум в интервале аппроксимации а ≤ х ≤ b квадрата отклонения функции f(x) от заданной непрерывной функции ξ(х), т. е., из условия:
b
Λ= 1/b-a∫a [f(x)- ξ(x)]2 dx = min . (7)
В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов ak аппроксимирующего полинома f(x), т. е. уравнений
дΛ ∕дa0 =0; дΛ ∕дa1 =0; дΛ ∕дa2 =0, . . . , дΛ ∕дan =0. (8)
Доказано, что и эта система уравнений имеет единственное решение. В простейших случаях оно находится аналитически, а в общем случае — численно.
Чебышев установил, что должно для максимальных отклонений выполняться равенство:
В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.
В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.
Во многих прикладных задачах анализа колебаний в нелинейных резистивных цепях аппроксимируемая вольт - амперная характеристика в интервале аппроксимации с достаточной точностью представляется двумя или тремя отрезками прямых.
Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нелинейной резистивной цепи при «небольших» по величине воздействиях на нелинейный элемент, т. е. когда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = Iмах