Найдем комплексную спектральную плотность одиночного прямоугольного импульса при симметричном расположении.
Uu
|
Получается непрерывная функция частоты вида
Вывод: Спектр одиночного сигнала похож на спектр последовательности таких же сигналов, точнее соответствует огибающей спектра дискретного сигнала, но размерности у них разные.
Математически спектральная плотность симметричная функция
Рассмотрим несимметричное расположение сигнала.
Найдем его спектр. Это можно сделать напрямую с помощью интеграла Фурье, а можно по теореме запаздывания.
|
Общий угол Ψ(ω)-ωtu/2
Спектральная плотность амплитуд не изменяется,
Спектры некоторых типовых сигналов
Их можно получить на основе прямого преобразования Фурье, а можно из операторных изображений этих сигналов, заменив p на jω.
1) Единичная ступенчатая функция: . Следовательно, спектральная плотность амплитуд равна .
2) Единичная импульсная функция . Спектральная плотность равна 1, т.е. спектральная плотность равномерна.
Экспонента:
3) Профессиональный сигнал – радиоимпульс
Радиоимпульс ─ сигнал, огибающая которого соответствует прямоугольному импульсу, но он имеет заполнение какой-то частотой ωЗ . Частота заполнения ─ технически частота несущей радиостанции.
Определим спектр такого сигнала. Это можно сделать, используя теорему смещения в области комплексного переменного.
Спектр импульса переносится в район частоты – ωЗ и ωЗ . При частоте 1000 р/c получим
На этом принципе работают все радиостанции, передающие радиосигналы.
Понятие об энергетическом спектре одиночных сигналов. Ширина спектра
Энергия сигналов зависит от мощности, поэтому рассматривают мощность электрического сигнала, при этом выбирают единичное сопротивление для того, чтобы были стандартные условия. =u2/R
Следовательно, мощность и энергия пропорциональны квадрату рассматриваемой величины сигнала (тока или напряжения). Полная энергия сигнала может быть найдена как:
- на единичном сопротивлении.
Поскольку частота и время – независимые переменные, то порядок интегрирования можно менять местами.
Квадрат модуля спектральной плотности называют энергетическим спектром сигнала. В энергии большие составляющие играют более важную роль, чем в форме сигнала.
Под шириной спектра для одиночного сигнала понимают диапазон частот, где сосредоточена основная доля энергии сигнала (90%). Ширину спектра можно определить, решая интегральное уравнение:
Простейшим способом определения граничной частоты ширины спектра является графический: строится график и определяется частота, при которой значения энергетического спектра становятся меньше 0,1 от максимального.
|
Более точно получается при использовании площади (можно рассчитать всю площадь по клеточкам, потом рассчитать ее десятую часть и отнять от полной мощности графически).
Условия безыскаженной передачи электрических сигналов
В системах передачи информации электрические цепи в основном предназначены для передачи электрических сигналов, несущих какую-то информацию. При этом желательно, чтобы информация не изменялась; для этого электрический сигнал не должен меняться или искажаться (какой был на входе, такой должен оставаться на выходе). Допускается масштабное изменение сигнал по величине и незначительное для земных условий запаздывание во времени.
Определим требования к коэффициенту передачи K(jω), чтобы не было искажений.