Характеристики основных классов моделей систем
2.1. Аналитические модели
Аналитические модели реализуются обычно без ЭВМ и позволяют построить качественную картину анализируемого явления или объекта, например, формулы закона Ома в электричестве, формулы Тагути в менеджменте качества и т.п. Это модели, применяемые обычно для обобщенного моделирования относительно простых систем (чаще всего в технике). В человеко-машинных системах (таких как система менеджмента качества) модель системы трудно описать в виде простых формул, т.к. здесь не открыты еще законы функционирования таких сложных систем. В качестве примера аналитической модели рассмотрим формулу функции потерь качества, предложенную японским ученым Тагути.
, где
L – потери качества;
С – коэффициент затрат;
х – значение показателя качества;
Т – целевое значение показателя качества;
К – минимальные потери для общества ( )
2.2. Эмпирико-статистические модели
Методы эмпирико-статистического моделирования очень разнообразны (от простейшей статистической обработки данных до регрессионного, факторного и кластерного анализа) и используются на первом этапе математизации той или иной области знаний. Однако эти модели не позволяют вскрывать причинно-следственные связи моделируемых систем, они служат только для проверки разного рода гипотез об этих связях.
Особое значение здесь имеет многомерный статистический анализ систем, который представляет собой совокупность формализованных статистических методов, базирующихся на представлении исходной информации в многомерном пространстве и позволяющих определять неявные, но объективно-существующие закономерности в структуре и тенденциях развития изучаемых объектов менеджмента качества. Множество методов многомерного анализа разбивается на две группы:
1. методы вероятностного анализа многомерных данных – это методы поиска законов распределения многомерной случайной величины, статистического оценивания многомерных данных и проверки многомерных статистических гипотез;
2. методы логико-алгебро-геометрического направления. В эту группу входят методы: множественный корреляционно-регрессионный анализ, факторный анализ, кластерный анализ, дискриминантный анализ, многомерное шкалирование и др.
Практическое применение многомерного статистического анализа требует обязательного использования вычислительной техники, так как многомерный анализ отличается большой вычислительной трудоемкостью. Появление новых аналитических информационных технологий типа хранилища данных (ХД), OLAP и Data Mining открывает новые возможности для повышения эффективности применения многомерного статистического анализа в менеджменте качества.
2.3. Имитационные модели
Реализация такой модели осуществляется только на ЭВМ. Модель имитирует на ЭВМ функционирование изучаемого объекта и представляет собой совокупность алгоритмов, программ и устройств, реализующих диалог человека и ЭВМ. Примеры имитационных моделей:
· Вычислительные модели напряженного состояния деталей машин (методы конечных элементов);
· Имитационные модели процессов трения и износа в машинах;
· Модель «Азовское море»;
· Модель атмосферы Земли;
· Глобальная модель мира Римского клуба;
· Имитационная модель системы менеджмента качества.
2.4. Логические модели рассуждения
Модели, базирующиеся на применении математической логики. В основе их лежат такие схемы:
1. Аксиоматическая (дедуктивная) система (см. формальная система в предыдущей лекции), которую формально можно представить четверкой множеств
М1 = <Т, Р, А, В>, где
М1 – формальная система (см. лекцию 11)
2. Квазиаксиоматическая система:
М2 = <М1, Н, К>, где
М1 – формальная система;
Н – множество аксиом предметной области;
К – множество правил правдоподобных рассуждений.
3. Семиотическая система:
М3 = <М2, f1(T), f2(P), f3(A), f4(B), f5(H), f6(K)>, где
М2 – квазиаксиоматическая система (см. выше);
Fi(α) (i=1,…,6) – процедуры изменения соответствующих элементов α в формальной (М1) и квазиаксиматической (М2) системах.
Семиотические системы возникли в связи с тем, что в реальных ситуациях внешние воздействия на объект или его внутренние свойства могут приводить к видоизменению самого объекта, его свойств и даже законов его функционирования. Для описания такого мира языка аксиоматических и квазиаксиоматических систем становится недостаточно, поэтому требуются более мощные системы моделирования, которые могли бы отражать трансформируемость мира, к таким моделям относятся семиотические системы.
2.5. Эвристическое моделирование
Эвристическое моделирование (программирование) – это разработка моделирующих программ с использованием эвристик. Под эвристикой понимается заимствованные из психологии правила, стратегии, приемы, используемые человеком при решении задач. Исследователь при этом конструирует в виде программы для ЭВМ модель определенного поведения интеллектуальной системы. Для этого он изучает соответствующую литературу, анализирует экспериментальные данные, наблюдает за испытываемой системой (человек – компьютер), протоколирует ее рассуждения. Затем составляет модель решения задачи в виде программы, тестирует ее и устанавливает, в чем действия полученной программы отличаются от действий изучаемого интеллекта. Корректирует программу и т.д. добивается от нее интеллектуального поведения. Таким образом создаются модели автоматизации проектирования изделий (САПР), разработки технологических процессов, диагностические модели, модели работы экспертов и т.п.
2.6. Самоорганизующиеся модели
Это новое научное направление в области моделирования сложных систем, базирующихся на методах искусственного интеллекта. Оно включает в себя ряд методов моделирования интеллектуальных систем:
1. Нейроподобные сети;
2. Многоагентные (мультиагентные) системы (применяются для моделирования работы в человеческих коллективах);
3. Нечеткие множества и мягкие вычисления;
4. Эволюционные модели (применение алгоритмов естественной биологической эволюции для моделирования развития сложных искусственных систем);
5. Генетические алгоритмы (методы моделирования и оптимизации сложных систем, основанные на механизмах взаимодействия хромосом человека).