Основы теории подобия. Получение критерия Нуссельта и его физический смысл.

Современная наука предлагает исследователю три основных подхода для решения инженерных задач. Всегда предпочтительно аналитическое решение, поскольку оно дает общий результат, удобный для расчетов и наглядно отражающий влияние одних факторов на другие. Однако любая математическая модель, любые дифференциальные уравнения всегда лишь в главном, в основном отражают свойства и особенности реального явления. Именно поэтому достоверность и точность аналитического решения нуждаются в подтверждении экспериментами. К сожалению, как было сказано выше, многие практические задачи аналитически неразрешимы. Правильно поставленный эксперимент гарантирует достоверность результата. Однако это результат единичный, не способный дать пищу для обобщений или прогнозирования изменений при изменении условий опыта. Поэтому всегда речь ведется о проведении серии или многих серий опытов, что долго, трудоемко и дорого. Численное решение задач на ЭВМ как бы объединяет оба предыдущих подхода, поскольку здесь оперируют с математической моделью явления и получают единственное решение задачи, не обладающее, увы, ни общностью, ни достоверностью результата. Однако при наличии программы не представляет трудностей провести множество численных экспериментов (так еще по другому называют этот подход) и выявить важнейшие закономерности явления. Поэтому сегодня такой подход получил самое широкое распространение,

сделавшись самым мощным инструментом ученого и инженера. При экспериментальных исследованиях обычно ставится задача установить количественную зависимость одного или ряда определяемых параметров от величины других определяющих факторов. Чтобы сделать это, опыты проводят отдельными сериями так, чтобы в каждой серии изменялся только один влияющий фактор, остальные же оставались бы неизменными. При оптимальном планировании экспериментов от этого правила отступают, уменьшая число требуемых серий. Однако всегда экспериментальное исследование связывается с большим числом отдельных экспериментов. Теория подобия позволяет существенно сократить число необходимых опытов и обобщать их результаты в понятной и удобной для практики форме.

Сущность подхода здесь простая: все явления одного класса (теплопроводность, конвекция и др.) делят на отдельные группы подобных явлений, выявив особые признаки такого подобия. Далее из множества явлений каждой группы экспериментально исследуют лишь малое число их, выявляя зависимости не между конкретными размерными величинами, а между обобщенными, безразмерными числами подобия, количество которых всегда меньше, чем размерных параметров.

Результаты опытов обобщают в виде полуэмпирических формул, которые однако справедливы для всех явлений данной группы.

Два явления считают подобными, если для всех одноименных параметров в любых сходственных точках и в сходственные моменты времена имеют место соотношения:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

Здесь а, b, с, ... – параметры одного явления; А, В, С, ... – одноименные параметры другого явления; kа, kb, kс,... – константы подобия; штрихами отмечены сходственные моменты времени. Сходственные точки находятся в геометрически подобных местах. Сходственные моменты времени – это такие моменты, когда явления находятся в сходственных (аналогичных) состояниях. Ведь

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

в общем случае подобные явления могут протекать и не синхронно, как например колебания двух маятников, показанных на рис. 2.39 в сходственных состояниях. Выявим теперь основное свойство подобных явлений, анализируя два подобных явления теплоотдачи. Каждое из них описывается (конечно же не полностью) известным дифференциальным уравнением теплоотдачи:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

Здесь индексами 1 и 2 отмечена

принадлежность описания первому или второму явлению. Поскольку явления подобны, между их параметрами имеют

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

место соотношения:

Выразим значения параметров первого явления через параметры второго и константы подобия:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

и подставим полученные значения в формулу (2.50), группируя все константы подобия в один множитель:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

Полученная формула описывает теперь связь между параметрами второго

явления, и значит она должна быть тождественно одинакова с формулой (2.51). Это возможно лишь тогда, когда множитель, составленный из констант подобия и называемый индикатором подобия, будет равен единице:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

Мы обнаружили, что у подобных явлений некоторые безразмерные комплексы, составленные на основе математического описания явления и называемые числами или критериями подобия, являются численно одинаковыми. Распространяя этот вывод на любые два явления из всей группы подобных явлений,

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

можно утверждать, что для всех явлений такой группы

(idem – сокращенное обозначение понятия "численно одно и то же"). Числам подобия дают имена ученых, внесших большой вклад в теорию теплообмена и гидромеханику. В частности мы получили число Нуссельта:

Основы теории подобия. Получение критерия Нуссельта и его физический смысл. - student2.ru

где через l обозначен определяющий размер, в качестве которого берется характерный линейный размер из условийоднозначности. Величина Nu в обобщенном виде характеризует интенсивность теплообмена при теплоотдаче. Понятно, что сложные явления, такие как теплоотдача, нельзя охарактеризовать только одним

критерием подобия. Действительно, если аналогичным образом (это называют методом масштабных преобразований) проанализировать и другие дифференциальные уравнения пограничного слоя, то можно получить еще ряд критериев. Из них (и их комбинаций) наибольшее практическое применение находят следующие критерии:

– критерий Рейнольдса (Re = wl / ν), характеризующий соотношение между силами инерции и силами трения, действующими в движущейся жидкости;

– критерий Прандтля (Рг = ν / а), характеризующий подобие теплоносителей по теплофизическим свойствам;

– критерий Грасгофа (Gr = gl3βΔt / ν2), характеризующий соотношение между подъемными силами и силами трения, действующими в движущейся жидкости. Значения критериев Re, Рr, Gr можно рассчитать, используя сведения из условий однозначности, поэтому их называют определяющими критериями. Задача исследователя, таким образом, заключается в том, чтобы для данной группы подобных явлений на основании экспериментов определить зависимость определяемого критерия (числа Нуссельта) от определяющих критериев: Nu = f (Re,Pr,Gr).

Обычно результаты каждой серии экспериментов представляют в логарифмической системе координат, осредняя опытные точки прямой линией, что позволяет получить частные зависимости в виде степенных функций,

например Nи = С Rеа. На сновании таких частных зависимостей находят обобщенную формулу, справедливую для всей группы подобных явлений: Nu = ARea Prb Grс , Величины А, а, b и с для разных групп подобных явлений приводятся в справочной литературе. Выявленное нами основное свойство подобных явлений позволяет сформулировать условия для физического моделирования явлений: помимо геометрического подобия для подобия явлений необходимо и достаточно, чтобы каждые два одноименных определяющих критерия подобия и у явления, и у модели были бы численно одинаковы.

Наши рекомендации