Исследование упругих колебаний
Цель работы – ознакомление с характером собственных упругих колебаний, определение модуля Юнга металлов и логарифмического декремента затухания системы.
Приборы и принадлежности: лабораторный модуль ЛКМ–3, набор грузов, набор упругих стержней, пружина, нить с крючком, измерительная система ИСМ-1 (секундомер).
Введение
Установка для исследований упругих колебаний собрана на базе модуля ЛКМ-3 (рисунок). Упругий стержень (балка) 1 закреплен на стойке посредством цилиндрического кронштейна. К концу стержня прикреплен конец нити, перекинутой через блок. К другому концу нити прикреплен груз переменной массы, способный совершать колебания.
Рис. Установка для исследования упругих колебаний на модуле ЛКМ-3
При этом незакрепленный конец стержня колеблется в вертикальной плоскости.
В механике простейшими колебательными системами с одной степенью свободы являются пружинные маятники. Период колебаний Т системы, изображенной на рисунке, при малом затухании может быть рассчитан по формуле
(1)
где m – масса груза, k – коэффициент жесткости балки.
Для того чтобы не учитывать массу балки 1 и шкива при измерении жесткости балки, воспользуемся формулой
, (2)
где m1 и m2 – масса грузов, T1 и T2 – соответствующие им периоды колебаний.
Жесткость балки определяется ее размерами, формой, способом закрепления и модулем упругости (модулем Юнга) Е ее материала. Для круглого стержня имеем
(3)
где d – диаметр, L –- длина стержня.
Порядок выполнения работы
Задание I.Определение коэффициента упругости стержня
1. Соберите установку так, как это показано на рисунке. Закрепите на конце стержня 1 нить, перекиньте ее через блок и подвесьте к концу нити груз т. Стержень ориентируют перпендикулярно нити с погрешностью до 10°.
2. Измерьте линейкой 2 расстояние x1от основания стойки до нижнего края груза.
Таблица 1
№ п/п № | материал стержня | d, мм | m1, кг | m2, кг | Δm=m1– m2, кг | x1, м | x2, м | Δx= x1–x2, м | k, Н/м |
сталь 1 | 2,95 | ||||||||
сталь 2 | 3,99 3,99 3,99 | ||||||||
латунь 1 | 2,96 | ||||||||
латунь 2 | 3,95 |
3. Измените массу груза на величину Δm и измерьте новое расстояние х2 . Рассчитайте коэффициент упругости стержня по формуле (4) и данные занесите в табл. 1.
. (4)
4. Проделайте аналогичные измерения для других стержней.
Задание II.Определение коэффициента упругости и модуля Юнга стержня методом колебаний
1. Подключите датчик угла поворота блока к разъему № 2 на задней стенке модуля ИСМ–1. Переключатель 10 переведите в положение К2. Переключатель 4 – в положение «:2», переключатель 5 – в положение «цикл», переключатель 8 - в положение «+» или «–», переключатель 9 – в среднее положение. Включите питание модуля.
2. Перекиньте нить через блок и закрепите на конце нити груз т. Поверните блок так, чтобы указатель блока совместился с нулевым делением шкалы, при этом щель диска блока должна находиться в зазоре фотодатчика так, чтобы светился индикатор 3.
3. Слегка нажав на балку, отпустите ее и измерьте период ее колебаний Т1 с грузом m1. Измените массу груза и измерьте период колебаний Т2с грузом т2.
4. Жесткость стержня рассчитайте по формуле (2), модуль Юнга по формуле (3). Данные занесите в табл. 2. Повторите измерения для других стержней.
Таблица 2
№ п/п | Материал стержня | d, мм | L, м | m1, кг | m2, кг | Т1, с | Т2, с | k, Н/м | E, Н/м2 |
Задание III.Определение логарифмического декремента и коэффициента затухания системы с пружиной
1. Зацепите один конец пружины за крючок у основания стойки. Ко второму концу пружины прикрепите нить, перекиньте ее через блок и подвесьте к другому концу нити груз массой т. Приведите систему в колебательное движение. Измерьте период Т колебания груза. Результат запишите в табл. 3.
2. Отключите датчик угла поворота блока и переведите переключатель 4 в положение «:1». Выводя маятник из положения равновесия, отметьте его начальное отклонение х0.
3. Запустив маятник, измерьте время (с помощью кнопки 6 – «ручн»), в течение которого амплитуда колебаний уменьшится в 2 раза: x(t) = х0/2. Измерения проведите при разных значениях отклонения х0 и массах груза т. Результаты измерений запишите в табл. 3.
4. Рассчитайте величину логарифмического декремента затухания по формуле
q (5)
5. Рассчитайте коэффициент затухания β по формуле (6) и заполните табл.3.
(6)
Таблица 3
№ п/п | m, кг | Т1, с | t, с | x0, м | x, м | θ | β, с-1 |
Контрольные вопросы
1. Вывод уравнения гармонических колебаний для случая малых горизонтальных колебаний груза на пружине.
2. Запишите законы изменения во времени следующих параметров колебательного движения: смещения из положения равновесия, скорости и ускорения материальной частицы.
3. Как изменяется во времени энергия колеблющейся частицы? Как в этих зависимостях находит отражение закон сохранения полной механической энергии?
4. Вывод уравнения затухающих колебаний. Как соотносятся между собой периоды собственных затухающих и незатухающих колебаний? Почему затухающие колебания материальной частицы не являются гармоническими?
5. Дайте определение коэффициента затухания, логарифмического декремента затухания и добротности колебательной системы.
6. Дайте определение параметров напряженного состояния твердого тела: относительной деформации, модуля Юнга и коэффициента упругости. Сформулируйте закон Гука для твердого тела, находящегося в напряженном состоянии.
Задания для отчета по лабораторной работе
1. К вертикальной проволоке длиной L = 5 м и площадью поперечного сечения S = 2 мм2 подвешен груз массой m = 5,1 кг. В результате проволока удлинилась на x = 0,6 мм. Найти модуль упругости (модуль Юнга) материала проволоки.
2. К стальному стержню длиной L = 3 м и диаметром
d = 2 см подвешен груз массой m = 2,5 103 кг. Определить напряжение σ в стержне. Модуль Юнга стали E = 220 ГПа
(ГПа – ГигаПаскаль).
3. По условиям предыдущей задачи определить относительное ε и абсолютное удлинение x стержня.
4. Проволока длиной l = 2 м и диаметром d = 1 мм натянута практически горизонтально. Когда к середине проволоки подвесили груз массой m = 1 кг, проволока растянулась настолько, что точка подвеса опустилась на h = 4 см. Определить модуль Юнга E материала проволоки.
5. Тонкий стержень одним концом закреплен, к другому концу приложен момент силы M = 1 кН м. Определить угол φ закручивания стержня, если постоянная кручения
C = 120 кН м /рад.
6. Коэффициент линейного теплового расширения стали равен 12 10-6 К-1, модуль Юнга E =220 ГПа (ГигаПаскаль). Какое давление p необходимо приложить к торцам стального цилиндра, чтобы длина его оставалась неизменной при повышении температуры на 100°С.
7. Стальной канат диаметром 9 мм может выдержать вес неподвижной кабины лифта. Какой диаметр должен иметь канат, если кабина лифта может иметь ускорение до 8 g.
8. Насколько вытягивается стержень из железа (модуль
Юнга Е=220 ГПа), подвешенный за один конец под действием собственного веса?
9. По условиям предыдущей задачи определить, насколько меняется объем стержня.
10. Какую работу A надо совершить, чтобы растянуть на x = 1 мм стальной стержень (E = 220 ГПа) длиной l = 1 м и площадью поперечного сечения S = 1 см2.
11. Точка совершает колебания с частотой ω и коэффициентом затухания β. Найти амплитуду скорости точки как функцию времени, если в момент t = 0 амплитуда ее смещения равна a0.
12. По условиям предыдущей задачи найти амплитуду скорости точки как функцию времени, если в момент t = 0 смещение x(0) = 0 и проекция скорости vx = v0.
13. Математический маятник совершает колебания в среде, для которой логарифмический декремент затухания θ0 = 1,5. Каким будет значение θ, если сопротивление среды увеличить в
n = 2 раза?
14. По условиям предыдущей задачи определить, во сколько раз следует увеличить сопротивление среды, чтобы колебания стали невозможны?
15. К пружине подвесили груз, и она растянулась на
Δx = 9,8 см. Логарифмический декремент затухания θ = 3,1.С каким периодом будет колебаться груз в вертикальном направлении?
16. Амплитуда затухающих колебаний маятника за время
t1 = 5 мин уменьшилась в два раза. За какое время t2 , считая от начального момента, амплитуда уменьшится в восемь раз?
17. За время t = 8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания β.
18. Логарифмический декремент затухания колебаний маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза?
19. Амплитуда колебаний маятника длиной l = 1 м за время t = 10 мин уменьшилась в два раза. Определить логарифмический декремент затухания β.
20. Определить период T затухающих колебаний, если период T0 собственных колебаний системы равен 1 с и логарифмический декремент θ = 0,628.
Приложение I
Коэффициенты Стьюдента (при α= 0,95)
п | ∞ | ||||||||||
τ(α,n) | 12,7 | 4,3 | 3,2 | 2,8 | 2,6 | 2,4 | 2,4 | 2,3 | 2,3 | 2,1 |
Приложение II