Теорема об изменении количества движения

Количеством движения (импульсом) материальной точки называется вектор

Теорема об изменении количества движения - student2.ru

Количеством движения (главным вектором количеств движения) механической системы называется вектор, равный геометрической сумме количеств движения всех ее точек

Теорема об изменении количества движения - student2.ru

Для количества движения механической системы можно получить более компактное выражение. Продифференцируем по времени выражение (21) для радиус-вектора центра масс, получим

Теорема об изменении количества движения - student2.ru

После умножения обеих частей этой формулы на М для количества движения механической системы будем иметь

Теорема об изменении количества движения - student2.ru (35)

Импульсом силы за промежуток времени (0,t) называется вектор

Теорема об изменении количества движения - student2.ru (36)

Проекции импульса силы на оси координат вычисляются по формулам

Теорема об изменении количества движения - student2.ru

Отметим, что в частном случае, когда вектор силы Теорема об изменении количества движения - student2.ru остается постоянным, выражение для импульса силы упрощается

Теорема об изменении количества движения - student2.ru

Выведем далее формулу, выражающую теорему об изменении количества движения. Вычислим производную по времени от вектора количества движения механической системы

Теорема об изменении количества движения - student2.ru

После подстановки полученного значения Теорема об изменении количества движения - student2.ru в выражение теоремы о движении центра масс (34) получим

Теорема об изменении количества движения - student2.ru

Умножим последнее равенство на dt и вычислим интеграл от 0 до t от обеих частей полученного равенства, получим

Теорема об изменении количества движения - student2.ru (37)

где Теорема об изменении количества движения - student2.ru - количество движения системы в момент t ;

Теорема об изменении количества движения - student2.ru - количество движения системы в момент t=0 ;

Теорема об изменении количества движения - student2.ru - импульс внешней силы, действующей на k-ю точку системы.

Формула (37) выражает теорему об изменении количества движения механической системы:

Изменение количества движения механической системы за какой-либо промежуток времени равно геометрической сумме импульсов всех внешних сил, вычисленных за тот же промежуток времени.

Замечания

1. Равенство (37), выражающее теорему является векторным и при решении задач его следует записывать в проекциях на выбранные оси координат:

Теорема об изменении количества движения - student2.ru

2. Эта теорема связывает следующие физические характеристики: массы, скорости, внешние силы и промежутки времени. Поэтому ее удобно использовать при решении задач, в которых перечень заданных и искомых величин соответствует этому набору.

3. Внутренние силы механической системы не могут изменить ее количество движения.

Следствие.

Если сумма проекций внешних сил на какую-либо ось Ox равна нулю, то есть Теорема об изменении количества движения - student2.ru то при движении системы проекция ее количества движения на эту ось остается неизменной:

Теорема об изменении количества движения - student2.ru

Рассмотрим далее пример решения задачи.

Пример 5

Телу, находящемуся на гладкой наклонной плоскости, наклоненной под углом Теорема об изменении количества движения - student2.ru к горизонту, сообщили начальную скорость Теорема об изменении количества движения - student2.ru , направленную вверх вдоль наклонной плоскости. Определить, через какое время скорость тела уменьшится в 2 раза.

Решение

Выберем ось Ох, направленную вдоль наклонной плоскости в сторону движения тела. Изобразим тело в промежуточном положении и обозначим действующие на него внешние силы: силу тяжести Теорема об изменении количества движения - student2.ru и реакцию опорной гладкой поверхности Теорема об изменении количества движения - student2.ru (см. рис. 19). Запишем теорему об изменении количества движения в проекциях на ось Ох:

Теорема об изменении количества движения - student2.ru

Рис. 19.

Теорема об изменении количества движения - student2.ru (38)

В условиях задачи Теорема об изменении количества движения - student2.ru где Теорема об изменении количества движения - student2.ru - искомое время, Теорема об изменении количества движения - student2.ru - заданная скорость в момент Теорема об изменении количества движения - student2.ru Подставим эти значения в (38) и поделим все члены полученного равенства на m, получим:

Теорема об изменении количества движения - student2.ru

Отсюда находим искомое время:

Теорема об изменении количества движения - student2.ru

Наши рекомендации