Сеть CAN-контроллерная местная сеть (Controller Area Network)

CAN (Controller area network) - название последовательного интерфейса, который был разработан компанией BOSCH - ведущим поставщиком автоэлектроники, в начале 90х годов, первоначально для использования в ав­томобильных приложениях. Сегодня на рынке можно найти более сотни реализаций протоколов CAN в нескольких модификациях (версиях) в виде отдельных микросхем или интерфейсов, интегрированных в оборудование, оснащенное мик­роконтроллерами.

Ныне CAN рассматривается как стандартный последовательный интерфейс - стандартная контроллерная сеть для распределенных систем управления в различных отраслях техники, в том числе в ав­томобильной, аэрокосмической, медицинской отраслях, а также в роботизированных промышленных установках. Рассматривается версия CAN2А

Массовое производство компонентов CAN десятками известных производителей тиражами в десятки миллионов штук сделала тех­нологию достаточно дешевой.

В качестве международного стандарта протокол CAN был при­знан в 1993г - ISO 11898.

Протокол отличается надежностью передачи, помехоустойчивостью и обладает следую­щими возможностями:

- Распределенный доступ абонентов в сеть с неразрушающим арбитражем,

- Обнаружение ошибочных ситуаций при передаче, когда ни один абонент правильного сообщения не принял, и информирование пере­датчика о них,

- Возможность подключения в сеть дополнительных абонентов без уточнения ПО существующих, из-за оригинальной системы адресации сообщений.

- Одно и тоже сообщение по CAN может быть принято несколькими абонентами ,настроенными на прием данного типа сообщений.

- Количество узлов на шине не ограничено логически, так как нет почтового адреса у абонента (ограничения только по электрической нагрузке).

Протокол CAN обеспечивает пользователю два коммуникационных сервиса: посылку сообщений (передача кадра данных) и запрос сообщения (удаленный запрос на передачу или remote transmission request , RTR).

Другие сервисы: сообщения об ошибках, повтор передачи после обнаружения ошибки и т.п. является для пользователя прозрачным, т.е. микросхемы CAN выполняют эти действия автоматически. В отличие от MILSTD1553В, где эти функции выполняются ПО прикладного уровня.

В CAN четко просматривается физиче­ский и канальный уровни семиуровневой OSI. Верхние уровни OSI объединены и программируются пользователем.

Физический уровень сети CAN.Топология сети CAN - шина. Подключение абонентов к линии передачи без шлейфов. Обычно физический уровень реализуется в виде трех проводов. Два сигнальных - экранированная витая пара, и один общий. Возможно использование неэкранированных параллельных проводов, однако при этом вероятность искажения кадров повышается в 50 раз.

Скорость передачи информации до 1 Мбит/с, при длине линии 50 - 60 м. С увеличением длины линии допустимая скорость передачи падает. При длине линии 1000 метров скорость передачи 50 - 60 кбит/с поэтому CAN допускает программирование скорости обмена от 10 кбит/с до 1 Мбит/с. Наилучшая помехозащищенность достигается при волновом сопротивлении линии 120 ом.

Возможна реализация физического уровня на оптоволокне, в радиоканале, в ИК канале. Синхронизация приемника и передатчика обеспечивается RZ кодированием бит, либо в случае NRZ кодирования небольшой длиной сообщений, перемежаемых периодически синхорсигналами.

Формат кадров сети CAN. Обмен информацией между узлами осуществляется кадрами переменного размера до 108 бит. При этом кадр начинается стартовым битом и идентификатором в 11 бит, длина поля данных может варьироваться от 0 до 8 байт. Сегмент контрольной суммы CRS занимает 15 бит.

Обращает на себя внимание само поле данных - не более 8 байт. Это обеспечивает малое время задержки при передаче (сообщение короткое) с одной стороны, а с другой стороны является достаточным для тех задач управления, которые решает сеть CAN. При необходимости передать по CAN длинного сообщения оно может быть фрагментировано на несколько коротких до 64 бит.

Общее количество CAN узлов в сети логически не ограничивается (нет адреса узла и соответственно нет поля для размещения адреса ограниченного размера и имеются только ограничения, связанные с числом нагрузок на электронику передатчиков. Для передатчиков одного из типов число узлов в сети может достигать значения 110.

Сеть CAN-контроллерная местная сеть (Controller Area Network) - student2.ru

Распределенный доступ абонентов в сети CAN. Арбитраж при возникновении столкновений сообщений

В отличии от сети MILSTD1553B, сеть CAN имеет не централизо­ванный, а распределенный доступ абонентов на шину, т.е. передача может быть инициирована любым узлом сети CAN при условии обнаружения им свободной шины. Поэтому после мониторинга шины передача может быть начата одновременно несколькими узлами сети, т.е. возможно возникновение столкновении сообщений - коллизий (как в Ethernet).

Каждый на­чавший передачу узел осуществляет мониторинг поля идентифика­тора и бита RTR, находящиеся в заголовке кадра, - поля арбитража. Идентификатор типа сообщения определяет одновременно его приоритет. Разрешение коллизий в сети осуществляется на базе трех основных положений.

1. Идентификатор типа сообщения передается в последовательности от старшего бита к младшему. Доминирующим уровнем сигнала в сети принят логический 0. Одновременная пе­редача по сети (столкновение) бита с доминирующим уровнем (лог.0) и рецессивным уровнем (лог.1) даетв результате уровень логического нуля т. е. логический 0 всегда побеждает. Столкновение бит одинакового логического уровня дает в результате сигнал на шине того же логического уровня.

2. Код идентификатора типа сообщения несет в себе информацию о приоритете сообщения. Чем меньше номер идентификатора сообщения т. е. больше нулей в старших битах идентификатора, тем более приоритетным является тип сообщения.

3. В процессе передачи «поля арбитража» - идентификатора + RTR каждый передатчик, ведущий передачу, проверяет текущий логический уровень на шине и сравнивает его с тем значением уровня, который он только что от­правил в шину и который он запоминает.

Как только одним из передающих узлов будет обна­ружено, что он передал лог.1, а на шине этот бит превратился в лог.0, он поймет, что его «перешибло» более приоритетное сообщение и ему надо уступать – сразу же прекращать свою передачу, так как его сооб­щение, во-первых, исказилось и во-вторых имеет меньший приоритет из двух сообщений, столкнувшихся на ЛПИ.

При этом узел, ведущий передачу более приоритетного сообщения, передачу не прекращает – ведь его сообщение не исказилось и доводит ее до конца. Именно поэтому такой метод арбитража мы назвали неразрушающим. В отличие от Ethernet, где тоже распределенный доступ, но при столкновении сообщений оба передающих узла прекращают передачу, так как оба сообщения искажаются. После этого проводится процедура «расшаркивания» и повторения попытки передачи. Все это снижает производительность сети Ethernet.

Таким образом, арбитраж при выходе на шину осуществ­ляется не по приоритету передающего узла, а по приоритету пере­дающегося сообщения, который заключен в его идентификаторе.

Рассмотрим коллизию узла1 и узла 2.

Узел 1 0 1 0 1 1 0 1 1 0 1 0 0 Это идентификатор+RTR

Узел 2 0 1 0 1 1 0 1 1 1 . . .Узел 2 прекратил передачу

На линии 0 1 0 1 1 0 1 1 0 1 0 0 Узел1 передает до конца

Таким образом, приоритетным в сети при столкновениях сообщений является сообщение с наименьшим номером. Чем больше нулей в старших разрядах иден­тификатора, тем выше приоритет сообщения.

После освобождения шины попытка передачи менее приори­тетного сообщения может быть повторена.

Обеспечение надежности передачи в сети CAN

В отличие от многих других коммуникационных технологий, ис­пользующих принцип подтверждения (квитирования) факта получе­ния узлом адресованного ему сообщения за требуемый интервал времени, в стандарте CAN подтверждения получения сообщения индивидуально каждым узлом отсутствуют, и передатчику сообщается:

появление кадра с ошиб­кой передачи, причем специальным сообщением об ошибке, факт, что хотя бы один узел сообщение при­нял.

Для этого используется упомянутый кадр сообщения об ошибке, а также бит подтверждения (в ASK поле) принятия сообщения. ASK поле - поле подтверждения передачи работает следующим образом. Передающий узел всегда посылает в этом поле рецессивный бит - логическую 1. Ес­ли приемник принял сообщение правильное (подтверждается кон­трольной суммой), то он успевает в рамках этой передачи сразу установить в это поле бит доминирующего уровня - логический 0, который по определению «перешибает» рецессивный уровень.

Передатчик читает значение этого бита прямо на линии в процессе передачи и понимает, что в случае наличия доминирующего бита (логического 0) в этом поле, хотя бы один узел принял сообщение правильно.

При этом возможно, что все узлы, настроенные на данный идентификатор сообщения, приняли его правильно, возможно, что не все. Передатчик этого по данному виду контроля не распознает. Но если хотя бы один принял правильно, то передатчик считает, что он сообщение передал и далее у него проблем нет, а проблемы у того, кто не смог принять сообщение, и «успокаивается».

Таким образом, философия линии более «эгоистична», чем, например, в 1553 В.

Получив информацию об ошибке, передающий узел повторяет передачу исходного сообщения. Таким образом, имеет место решающая обратная связь при передаче данных. Имеется еще один вид контроля правильности передачи. Если проверка передатчиком уровня сигнала на линии на совпадение с уровнем сигнала, который был направлен в линию на участке арбитража позволяет обнаружить коллизию, то вне участка арбитража и «аск» контроля эта проверка не прекращает передачу сообщения, но может обнаружить искажения при передаче. В этом случае передача должна быть повторена.

При появлении информации об ошибках переданное ошибочное сообщение уничтожается во всех узлах сети. Имеется счетчик пере­данных ошибочных сообщений. Переполнение счетчика является ос­нованием для запрета узлу передавать сообщения, которые не воспринимаются ни одним узлом сети.

Необходимость резервирования элементов и ЛПИ определяется разработчиком сети и осуществляется, при необходимости, вне рамок протокола CAN.

Адресация сообщений в CAN. В протоколе CAN отсутствует прямая адресация сообщений по уникальному адресу абонента.

Имеется идентификатор сообщения, который определяет при­оритет и тип информации сообщения. При передаче сообщение получают все абоненты и проверяют тип сообщения. Абонент берет в обработку только тот тип сообщения, идентификатор которого «зашит» у него в памяти. Каждый абонент может обрабатывать до 15ти типов сообщений.

Таким образом, в CAN имеется возможность одновременной передачи сообщений нескольким абонентам, в том числе синхро­сигналов для всех.

Кроме того новые узлы, добавленные в сеть, не меняют ПО существующих узлов, если они являются потребителями или производи­телями имеющихся в сети типов сообщений.

Вопросы для самопроверки

Физический уровень сети MILSTD 1553B

Централизованный метод доступа абонентов в сеть MILSTD1553B

Типы и форматы сообщений сети MILSTD 1553B

Защита информации в сети MILSTD1553B

Сеть CAN-контроллерная местная сеть (Controller Area Network).

Физический уровень сети CAN

Формат кадров сети CAN

Распределенный доступ абонентов в сети CAN. Арбитраж при возникновении столкновений сообщений

Обеспечение надежности передачи в сети CAN

Адресация сообщений в CAN

Лекция 7. Программное обеспечение УСТС. Параллельные физические процессы СТС и многозадачная работа ПО управления СТС.

Декомпозиция и интеграция СТС

Сложную техническую систему, которая в результате декомпозиции- разбиения на относительно независимые части состоит из нескольких подсистем, порождает, объединяя в единое целое, программное обеспечение встроенных в неё вычислительных средств.

Это связано с тем, что выделенным подсистемам СТС соответствуют выделенные части структуры ПО, управляющие ими, но прежде всего потому что взаимодействие между подсистемами осуществляются на программном уровне путем реализации связей по управлению и данным между соответствующими частями ПО. Это взаимодействие может быть логически достаточно сложным и обеспечивает выполнение целей функционирования системы, как единого целого, для чего выделяются специальные структурные части ПО.

В сложных технических системах одновременно протекают несколько физических процессов. Причем в каждой подсистеме СТС может протекать не один физический процесс. Применительно к ПО встроенных в систему ЦВМ физический процесс - задача может реализовываться работой одной или некоторой совокупности структурных единиц ПО. При этом одновременно развивающимся во времени физическим процессам должна соответствовать параллельная работа нескольких подсистем и соответствующих им программ ПО, обеспечивающих управление этими физическими процессами и их синхронизацию, что делается специальными механизмами операционных систем (ОС).

С точки зрения реализации в программном обеспечении задачам и состояниям функциональных физических процессов должны соответствовать процессы и потоки, как элементы вычислительного процесса, реализующие параллелизм задач.

Декомпозиция сложной системы порождает представление ПО управления ею в виде иерархической структуры. В общем случае такая структура ПО управления СТС достаточно универсальна, мало зависит от назначения сложной системы и принципиально связана с частотным разделением процессов управления на долгосрочное планирование, диспетчерское оперативное управление и исполнение низкоуровневых рабочих функций. В рамках этой структуры удобно проводить разработку и модернизацию управления ПО.

Из иерархической структуры построения ПО не видно, когда какой процесс начинается и когда заканчивается, какие задачи и соответствующие им процессы исполняются параллельно, как программные процессы взаимодействуют во времени. Без этой информации разработать ПО управления СТС в реальном времени невозможно. Поэтому для разработки ПО управления структурное представление ПО всегда дополняется схемами взаимодействия его структурных частей во времени в той или иной форме. Эти схемы строятся для каждого варианта функционирования (использования) сложной системы и являются основой для решения вопросов организации многозадачного вычислительного процесса встроенной ЦВМ.

В централизованной системе ПО обмен данными между процессами всегда проводится через общую память. При этом надо преодолеть изоляцию памяти процессов, к которой мы стремились с точки зрения безопасности работы ПО и которую обеспечивает ОС.

Параллельное исполнение программ и процессов несет в себе некоторые угрозы, требующие развития методов защиты ресурсов ЦВМ от ошибок совместного их использования. Проблема защиты критических ресурсов при попытке их совместного использования параллельными процессами является центральной проблемой реализации многозадачности при конструировании безопасного ПО.

Путь декомпозиции СТС и последующей её интеграции «проходит» через программное обеспечение встроенных в СТС вычислительных средств. Это происходит не столько потому, что выделенным из СТС подсистемам соответствуют выделенные части структуры ПО, управляющие ими, но прежде всего потому что взаимодействие между подсистемами осуществляются на программном уровне путем реализации связей по управлению и данным между соответствующими частями ПО.

Поэтому понимание природы управляемого процесса, динамических свойств системы и подсистем, теории управления - половина необходимых слагаемых для успешного решения задач управления СТС. Другая половина успеха – суметь структурировать, а затем интегрировать в рамках и терминах программного обеспечения полученное теоретическое решение задачи управления (рис. 7.1).

Нами рассмотрены системы управления, полученные в результате декомпозиции сложной технической системы, для которых имеется один контур управления и одна или несколько управляемых координат. В сложных технических системах необходимо управлять сразу многими координатами, определяющими состояние многомерного объекта управления. Например, температурой и уровнем воды, скоростью и направлением вращения барабана в стиральной машине. Управление по трем углам ориентации в пространстве в летательном аппарате для того, чтобы он летел в заданном направлении и выполнял целевую задачу и т.п.

В сложных системах одновременно протекают несколько физических процессов управления. Физический процесс управления - упорядоченная последовательность действий в системе над информацией, энергией или материей, приводящая к требуемому результату. Физические процессы состоят из задач. Задачами будем называть функциональные единицы деятельности, которые разбивают физические процессы системы как во времени, так и по физическим компонентам. Обычно в СТС одновременно активны и исполняются несколько задач и это можно использовать, чтобы описать параллелизм физических процессов в системе, реализующий сложное её поведение

При техническом проектировании системы управления перед переходом к конструированию ПО, необходимо формализовать поведение системы – представить его в виде совокупности параллельно выполняемых задач, которые в свою очередь могут быть представлены, как переходы между состояниями используемых объектов внутри каждой задачи. Условия перехода могут быть связаны с определенной логикой управления, реализуемой соответствующим контуром управления.

Реализация одновременно протекающих физических процессов через параллельную работу ПО

Применительно к ПО ЦВМ физический процесс (задача) может реализовываться работой одной или некоторой совокупностью структурных единиц ПО.

Сеть CAN-контроллерная местная сеть (Controller Area Network) - student2.ru

.

ДЕКОМПОЗИЦИЯ СИСТЕМЫ   …

           
   
Подсистема n Цели Задачи и связи
   
Подсистема 1 Цели Задачи и связи
 
  Сеть CAN-контроллерная местная сеть (Controller Area Network) - student2.ru

Рис. 7.1 - Путь декомпозиции и интеграции сложной системы проходит через ПО

При этом одновременно развивающимся во времени физическим процессам должна соответствовать одновременная работа соответствующих программ ПО или их частей, обеспечивающих работу этих физических процессов.

Если говорить об однопроцессорной ЦВМ, то в каждый момент времени в ней может решаться только одна задача. Таким образом, в проекции на программную реализацию одновременно протекающим физическим процессам должны соответствовать параллельно работающие программы, процессы или потоки. Два процесса или две задачи, или программы называются параллельными, если их выполнение может перекрываться во времени т.е. второй процесс начинается до завершения первого.

Техника параллельного исполнения задач в однопроцессорной ЦВМ всегда связана с разделением времени процессора путем выделения каждой задаче (процессу) последовательно кванта времени для исполнения, за который задача может быть решена полностью или частично. Если за выделенный квант времени задача не успеет решиться, то решение её прерывается и будет продолжено в следующем выделенном для неё кванте. Если эти кванты времени невелики и переключения с задачи на задачу будут достаточно быстрыми, то все задачи будут решаться параллельно. Параллельные процессы – классический способ описания поведения сложных технических систем.

Задачи и стоящие за ними процессы могут исполняться параллельно без проблем до тех пор, пока не возникнет потребность обращения их к общим ресурсам ЦВМ или в организации взаимодействия между ними - обмена данными или управлением. При этом возникают определенные угрозы и ограничения, связанные с очередностью (последовательностью) выполнения программ, с необходимостью наличия подготовленной информации к моменту обращения за ней и разделением общих ресурсов ЦВМ и т.п. Невыполнение этих ограничений приводят к ошибочным результатам работы ПО. Поэтому необходима синхронизация параллельно работающих программ ПО или процессов.

Идея параллельного исполнения программ ПО в реализации не безопасна не только в связи с возможными ошибками при разделении времени процессора, но и в связи с возможными пересечениями параллельно исполняющихся программ по памяти, так как в этом случае они могут подхватить чужие данные или исказить их. Кардинальный способ обеспечения безопасности в этом случае изоляция каждой исполняемой программы в своем виртуальном адресном пространстве – информационном «отсеке». Точно также поступают корабельные инженеры, обеспечивая безопасность - непотопляемость корабля.

Кроме того, реализация параллельного, а не строго последовательного исполнения программ требует их синхронизации, которая не может ограничиться простой «расстановкой программ» во времени, например, передачей на них управления некоторыми программами комплексного функционирования.

Такая синхронизация во времени вследствие множества случайных причин может быть нарушена и должна быть поддержана логической синхронизацией программ, связанной с установкой и анализом флагов завершения или не завершения синхронизируемых процессов

Многозадачная работа ПО СТС. Причины многозадачности

В результате программное обеспечение сложных технических систем выполняется в виде набора программ, разработанных коллективно и объединенных в многозадачный программный комплекс, части которого исполняются параллельно. Этому имеется несколько причин.

1. Наличие множества параллельных физических процессов управления в соответствующих подсистемах и многофункциональности СТС. При этом целесообразно по возможности для выполнения различных функций использовать один и тот же набор подсистем и ПО, но в различных сочетаниях. Это, кстати, один из принципов определения границ подсистем в процессе декомпозиции.

2. Отсутствия специалистов одинаково грамотно разбирающихся в разнородных предметных областях, соответствующих подсистемам сложной системы. Имеется естественная техническая и организационная специализация разработчиков системы и разработчиков ПО. При этом для обеспечения сроков разработки ПО (для сокращения времени его создания) требуется подключение нескольких разработчиков, а не создание некоего суперразработчика ПО. Даже если он и освоит все предметные области - делать ПО он будет очень долго.

Поэтому каждый из разработчиков независимо от других разработчиков разрабатывает программы в рамках своей предметной компетенции. Организационно правильным в данной ситуации – компиляция данных порознь разработанных частей ПО также должна быть независимой и раздельной.

3. Еще один источник многозадачности связан с необходимостью работы задач в реальном времени. Программирование задач реального времени отличается от чисто последовательного программирования тем, что внешние сигналы или события могут возникать в случайные моменты времени и требуют программного обслуживания на фоне уже решаемых задач. Время реакции на эти события должно удовлетворять заданным ограничениям.

Многозадачность поддерживается операционными системами (ОС). Реализация многозадачности может быть различной в различных ОС. Однако, в настоящее время сформировался некоторый единообразный подход, связанный с определением «процессов и потоков». В деталях эти понятия могут для различных ОС несколько различаться, но принципиально для авторитетных ОС эти понятия одинаковы благодаря стандарту POSIX (Portable Operation Systems Interface). Это развивающийся стандарт, призванный обеспечить переносимость исходных текстов прикладных программ между различными ОС. Термины, используемые в ОС UNIX, QNX и других юниксоподобных ОС, а также системные вызовы этих ОС соответствуют стандарту. Множество других ОС следуют стандарту POSIX, хотя и делают это не в полной мере, ссылаясь на сложившуюся практику. При рассмотрении стандарта иногда возникает впечатление, что некоторые формулировки имели цель: не вывести из категории удовлетворяющих стандарту какие-то прикладные программы или операционные системы. Однако, главная цель POSIX - это все-таки обеспечение мобильности прикладных программ.

Если системная ЦВМ однопроцессорная (и одноядерная), то многозадачная работа ПО осуществляется путем поочередного переключения по определенным правилам задач - разделения времени процессора между задачами. При этом производительность процессора ЦВМ должна быть настолько высокой, чтобы все задачи решались в РМВ. Тогда каждая задача- процесс, как бы не "чувствует" наличие других процессов - они ей не мешают. В многопроцессорных и многоядерных вычислительных системах возможна истинная параллельная работа процессоров или ЦВМ - истинное параллельное решение задач. При этом в обоих случаях возникают дополнительные затраты процессорного времени.

В случае однопроцессорной ЦВМ - это затраты на переключение между задачами и ожидания для синхронизации, в случае многопроцессорной или многомашинной вычислительной системы - это затраты на синхронизацию процессов и обмен данными между процессами в различных процессорах.

Иерархическое структурирование ПО - средство обеспечения его многофункциональности

Конечно, требуется рассмотрение примеров СТС, на которых можно показать методы реализации управления СТС на практике. На этих примерах также будет показана определяющая роль компьютерного управления и ПО компьютеров, встроенных в систему управления, реализующих сложность поведения СТС. Сложная техническая система совсем не обязательно связана с управлением ракетой, спутником или самолетом.

Рассмотрим простой пример - СТС, например, компьютеризированную стиральную машину, работа которой всем понятна (рис. 7.2). Управление работой этой системы осуществляется от встроенной ЦВМ. Стиральная машина многорежимна и обладает всеми признаками сложного поведения и по нашей классификации является СТС. Проектирование системы и ПО надо начинать с разработки её структуры. Этот процесс имеет также названия структурирование, декомпозиция. При декомпозиции сложной системы на ряд подсистем естественным образом происходит и декомпозиция (структуризация) ПО. Получаемые части ПО имеют названия – синонимы: программы, структурные единицы ПО, модули, компоненты ПО, подсистемы.

Сеть CAN-контроллерная местная сеть (Controller Area Network) - student2.ru

Рис. 7.2 - Иерархическая структурная схема ПО управления стиральной машиной и метод её получения

Проведем черту, ниже которой последовательно запишем наименования оборудования, которое должно управляться от ЦВМ (рис. 7.2). Сразу над чертой запишем задачи по управлению каждой единицей (подсистемой) оборудования. Каждой из этих задач в ЦВМ соответствует программа ПО, выполняющая только данную элементарную задачу. Например, программа, которая умеет включать и выключать двигатель на заданную угловую скорость вращения или программа, умеющая открывать и закрывать клапан холодной воды, конечно, когда ее об этом «попросят» – передадут на нее управление. Кто же это сделает? Это должна сделать специальная программа, обеспечивающая последовательное в нужном для проведении стирки порядке включение аппаратуры стиральной машины.

Эта специальная программа работает не напрямую с аппаратурой, а через рассмотренные нами программы, решающие задачи элементарного управления оборудованием, запуская их в определенном порядке. Совокупность рассмотренных программ позволяет реализовать сложное и безопасное управление.

Таким образом, ПО управления стиральной машины предстает в виде двухуровневой иерархической структуры.

Программа «управление циклом выполнения заданного режима стирки» имеет задачу реализации заданной последовательности работы устройств стиральной машины (в необходимых случаях параллельной работы) при выполнении выбранного оператором режима стирки. Таких программ, которые мы назвали программы комплексного функционирования (ПКФ), должно быть столько сколько режимов стирки имеется у машины. Программа реализует последовательность управления устройствами машины путем обращения и инициализации по определенной временной диаграмме программ нижнего уровня, управляющих работой отдельных устройств машины.

Далее рассмотрен более сложный пример - управления подсистемами спутника. Рассмотренный принцип естественного формирования структуры ПО справедлив и здесь. Отличия - в масштабе системы, сложности алгоритмов управления и потребных ресурсах ЦВМ. Декомпозиция этой системы для представления СТС в виде, позволяющем разделить общую задачу управления на части.

Более серьёзное отличие структуры управления данной СТС связано с автоматическим выбором необходимой ПКФ программами ПО планирования работы спутника по информации, переданной с земли. Это образует еще один уровень иерархии ПО. Тогда как в стиральной машине выбор режима – ПКФ осуществляется напрямую оператором.

Программы планирования, получая данные от оператора и запуская соответствующий режим-ПКФ, должны также подготовить необходимые исходные данные для работы этой ПКФ, преобразовывая полученную от оператора информацию. При этом необходимо учитывать тенденцию к упрощению (автоматизации) работы оператора, который требует предоставления ему возможностей обобщенной без деталей выдачи информации на систему.

Удобство проведение изменений в иерархической структуре ПО

В сложные системы всегда закладывается способность к развитию. Эта способность позволяет улучшать характеристики прототипа с затратами существенно меньшими, чем затраты на разработку новой системы и её ПО. Иногда это развитие с улучшением характеристик связано с изменением аппаратных компонент системы. Но эти изменения как правило требуют изменений и в ПО управления этими компонентами. Иногда развитие систем напрямую связано с улучшением управления системой, сопровождаемое изменениями в ПО.

Способность ПО к развитию и изменению не возникает сама собой и не является следствием удачного стечения обстоятельств. Она требует определенных умственных усилий для анализа и предвидения, чтобы определить, где и каким образом потребуется необходимость изменений, требует определенной стратегии структуризации ПО. В основном изменения должны быть изолированы в особых частях ПО и не затрагивать остальные части при их проведении.

В данных структурных схемах ПКФ тот самый элемент ПО, который должен аккумулировать в себе все функциональные изменения при развитии системы и ПО путем создания новых «вариантов использования» системы. Изменением ПКФ можно вводить новые варианты функционирования системы, не затрагивая управление в подсистемах

С другой стороны, при таком иерархическом структурировании модернизация отдельных агрегатов и подсистем СТС, затрагивающая и ПО управления ими, также локализована в программных модулях управления только модернизируемым агрегатом.

Наши рекомендации