Краткий курс лекций по высшей математике

Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:

Краткий курс лекций по высшей математике - student2.ru , (1)

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.

Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

Определение. Для системы линейных уравнений вида (1) матрица

А = Краткий курс лекций по высшей математике - student2.ru называется матрицей системы, а матрица

А*= Краткий курс лекций по высшей математике - student2.ru называется расширенной матрицей системы

Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна.

Элементарные преобразования систем.

К элементарным преобразованиям относятся:

1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.

2)Перестановка уравнений местами.

3)Удаление из системы уравнений, являющихся тождествами для всех х.

Теорема Кронекера – Капелли.

(условие совместности системы)

(Леопольд Кронекер (1823-1891) немецкий математик)

Теорема:Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

Очевидно, что система (1) может быть записана в виде:

x1 Краткий курс лекций по высшей математике - student2.ru + x2 Краткий курс лекций по высшей математике - student2.ru + … + xn Краткий курс лекций по высшей математике - student2.ru

Метод Гаусса.

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Краткий курс лекций по высшей математике - student2.ru

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

Краткий курс лекций по высшей математике - student2.ru , где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Элементы векторной алгебры.

Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

Краткий курс лекций по высшей математике - student2.ru

Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

Определение. Линейными операциями над векторами называется сложение и умножение на число.

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

Определение. Если Краткий курс лекций по высшей математике - student2.ru - базис в пространстве и Краткий курс лекций по высшей математике - student2.ru , то числа a, b и g - называются компонентами или координатами вектора Краткий курс лекций по высшей математике - student2.ru в этом базисе.

В связи с этим можно записать следующие свойства:

- равные векторы имеют одинаковые координаты,

- при умножении вектора на число его компоненты тоже умножаются на это число,

- при сложении векторов складываются их соответствующие компоненты.

Линейная зависимость векторов.

Определение. Векторы Краткий курс лекций по высшей математике - student2.ru называются линейно зависимыми, если существует такая линейная комбинация Краткий курс лекций по высшей математике - student2.ru , при не равных нулю одновременно ai , т.е. Краткий курс лекций по высшей математике - student2.ru .

Если же только при ai = 0 выполняется Краткий курс лекций по высшей математике - student2.ru , то векторы называются линейно независимыми.

Система координат.

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор Краткий курс лекций по высшей математике - student2.ru назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то Краткий курс лекций по высшей математике - student2.ru = (x2 – x1, y2 – y1, z2 – z1).

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то Краткий курс лекций по высшей математике - student2.ru .

Если точка М(х, у, z) делит отрезок АВ в соотношении l/m, то координаты этой точки определяются как:

Краткий курс лекций по высшей математике - student2.ru

В частном случае координаты середины отрезка находятся как:

x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.

Линейные операции над векторами в координатах.

Краткий курс лекций по высшей математике

Линейная алгебра.

Основные определения.

Определение. Матрицейразмера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

А = Краткий курс лекций по высшей математике - student2.ru

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.

Определение. Матрица вида:

Краткий курс лекций по высшей математике - student2.ru = E,

называется единичной матрицей.

Определение. Если amn = anm , то матрица называется симметрической.

Определение.Квадратная матрица вида Краткий курс лекций по высшей математике - student2.ru называется диагональнойматрицей.

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

Определение. Матрицу В называют транспонированнойматрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

Определители.( детерминанты).

Определение. Определителемквадратной матрицы А= Краткий курс лекций по высшей математике - student2.ru называется число, которое может быть вычислено по элементам матрицы по формуле:

М – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.

Определение: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

Миноры.

Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется миноромматрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.

Алгебраические дополнения.

Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.

В частном случае, алгебраическим дополнением элемента матрицы называется его минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.

Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.

Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

Определение.Если существуют квадратные матрицы Х и А, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, то матрица Х называется обратнойк матрице А и обозначается А-1.

Ранг матрицы.

Как было сказано выше, минором матрицы порядка s называется определитель матрицы, образованной из элементов исходной матрицы, находящихся на пересечении каких - либо выбранных s строк и s столбцов.

Определение. В матрице порядка m´n минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.

Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.

В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.

Определение. Порядок базисного минора матрицы называется рангомматрицы и обозначается Rg А.

Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.

Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные.

Теорема. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.

Теорема о базисном миноре.

Теорема.В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.

Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице.

Матричный метод решения систем линейных уравнений.

Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.

Метод удобен для решения систем невысокого порядка.

Метод основан на применении свойств умножения матриц.

Пусть дана система уравнений:

Краткий курс лекций по высшей математике - student2.ru

Составим матрицы: A = Краткий курс лекций по высшей математике - student2.ru ; B = Краткий курс лекций по высшей математике - student2.ru ; X = Краткий курс лекций по высшей математике - student2.ru .

Систему уравнений можно записать:

A×X = B.

Сделаем следующее преобразование: A-1×A×X = A-1×B,

т.к. А-1×А = Е, то Е×Х = А-1×В

Х = А-1×В

Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.

Теорема. (Правило Крамера):

Теорема. Система из n уравнений с n неизвестными

Краткий курс лекций по высшей математике - student2.ru

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di = Краткий курс лекций по высшей математике - student2.ru

Пример.

Краткий курс лекций по высшей математике - student2.ru

A = Краткий курс лекций по высшей математике - student2.ru ; D1= Краткий курс лекций по высшей математике - student2.ru ; D2= Краткий курс лекций по высшей математике - student2.ru ; D3= Краткий курс лекций по высшей математике - student2.ru ;

x1 = D1/detA; x2 = D2/detA; x3 = D3/detA;

Решение произвольных систем линейных уравнений.

Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:

Краткий курс лекций по высшей математике - student2.ru , (1)

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.

Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

Определение. Для системы линейных уравнений вида (1) матрица

А = Краткий курс лекций по высшей математике - student2.ru называется матрицей системы, а матрица

А*= Краткий курс лекций по высшей математике - student2.ru называется расширенной матрицей системы

Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна.

Элементарные преобразования систем.

К элементарным преобразованиям относятся:

1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.

2)Перестановка уравнений местами.

3)Удаление из системы уравнений, являющихся тождествами для всех х.

Теорема Кронекера – Капелли.

(условие совместности системы)

(Леопольд Кронекер (1823-1891) немецкий математик)

Теорема:Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

Очевидно, что система (1) может быть записана в виде:

x1 Краткий курс лекций по высшей математике - student2.ru + x2 Краткий курс лекций по высшей математике - student2.ru + … + xn Краткий курс лекций по высшей математике - student2.ru

Метод Гаусса.

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Краткий курс лекций по высшей математике - student2.ru

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

Краткий курс лекций по высшей математике - student2.ru , где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Элементы векторной алгебры.

Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

Краткий курс лекций по высшей математике - student2.ru

Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

Определение. Линейными операциями над векторами называется сложение и умножение на число.

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

Определение. Если Краткий курс лекций по высшей математике - student2.ru - базис в пространстве и Краткий курс лекций по высшей математике - student2.ru , то числа a, b и g - называются компонентами или координатами вектора Краткий курс лекций по высшей математике - student2.ru в этом базисе.

В связи с этим можно записать следующие свойства:

- равные векторы имеют одинаковые координаты,

- при умножении вектора на число его компоненты тоже умножаются на это число,

- при сложении векторов складываются их соответствующие компоненты.

Линейная зависимость векторов.

Определение. Векторы Краткий курс лекций по высшей математике - student2.ru называются линейно зависимыми, если существует такая линейная комбинация Краткий курс лекций по высшей математике - student2.ru , при не равных нулю одновременно ai , т.е. Краткий курс лекций по высшей математике - student2.ru .

Если же только при ai = 0 выполняется Краткий курс лекций по высшей математике - student2.ru , то векторы называются линейно независимыми.

Система координат.

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор Краткий курс лекций по высшей математике - student2.ru назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то Краткий курс лекций по высшей математике - student2.ru = (x2 – x1, y2 – y1, z2 – z1).

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то Краткий курс лекций по высшей математике - student2.ru .

Если точка М(х, у, z) делит отрезок АВ в соотношении l/m, то координаты этой точки определяются как:

Краткий курс лекций по высшей математике - student2.ru

В частном случае координаты середины отрезка находятся как:

x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.

Линейные операции над векторами в координатах.

Наши рекомендации