Асинхронные двигатели с короткозамкнутым ротором

По конструктивному исполнению и свойствам асинхронные исполнительные двигатели с обычным ротором, имеющим короткозамкнутую обмотку, выполненную в виде беличьей клетки, можно разделить на две группы:

1- двигатели обычной конструкции, у которых механическая обработка всех деталей производится до сборки двигателя;

2- двигатели «сквозной» конструкции, у которых посадочные места под подшипники и внутренняя поверхность статора обрабатываются в полусобранном состоянии.

Двигатели первой группы имеют обычный для электрических микромашин воздушный зазор 0,15...0,25 мм; а двигатели второй группы — уменьшенный до 0,03...0,07 мм.

Двигатели обычной конструкции применяются чаще всего в обычной промышленной автоматике. Они имеют невысокую стоимость.

Двигатели сквозной конструкции применяются в особо ответственных схемах приборной автоматики. Они имеют лучшие характеристики, но и более высокую стоимость.

Двигатели с ротором обычной конструкции чаще всего применяются в тех схемах автоматики, где быстродействие системы не играет существенной роли. Поэтому в быстродействии (Т = 0,2... 1,5 с) эти двигатели, имеющие зазор 0,15...0,25 мм, значительно уступают двигателям с полым немагнитным ротором. Однако по некоторым свойствам они выгодно отличаются от последних.

Двигатель с обмоткой в виде беличьей клетки на роторе может быть выполнен со значительно меньшим, чем у двигателя с полым ротором, магнитным сопротивлением на пути рабочего потока, что позволяет снизить намагничивающий ток, электрические потери от него в обмотке статора, а следовательно, повысить cosφ и КПД.

В схемах промышленной автоматики в настоящее время большое распространение получил простой и дешевый асинхронный исполнительный двигатель типа РДМ-09 с короткозамкнутой выполненной в виде беличьей клетки обмоткой на роторе. Статор этого двигателя, набираемый из листов электротехнической стали, имеет восемь зубцов, на каждом из которых располагается по одной катушке. Четыре катушки (через одну) составляют обмотку возбуждения, последовательно с которой включается конденсатор емкостью 1мкФ, четыре другие катушки — обмотку управления. Обе обмотки рассчитаны на напряжение питания 127 В и частоту питающей сети 50 Гц. Номинальная частота вращения двигателя 1200 об/мин.

В двигатель РДМ-09 встроен редуктор с передаточным отношением, соответствующим одному из восьми возможных вариантов, что позволяет изменять частоту вращения на выходе от 1,92 до 76,8 об/мин.

Двигатели сквозной конструкции (рис. 11.3) появились сравнительно недавно, но уже получили очень широкое распространение. Особенностью этих двигателей является то, что диаметр расточки под подшипники (в подшипниковых щитах) у них равен внутреннему диаметру статора, что позволяет производить окончательную обработку (шлифовку) внутренней поверхности статора и отверстий под подшипники после сборки (установки подшипниковых щитов) одновременно. Такая конструкция двигателя позволяет уменьшить воздушный зазор между статором и ротором до 0,03...0,05 мм, что способствует снижению намагничивающегося тока, потерь в обмотке статора, а следовательно, повышает coscp, КПД и коэффициент использования двигателя.

Ротор для уменьшения момента инерции обычно изготовляется малого диаметра. Необходимая мощность обеспечивается за счет увеличения его длины. Обычно отношение длины ротора к его равно 2...3.

Асинхронные двигатели с короткозамкнутым ротором - student2.ru

Рисунок 11.3. Асихронный исполнительный двигатель сквозной конструкции

Увеличение (за счет уменьшения воздушного зазора) вращающего (крутящего) момента Мк, развиваемого двигателем, и уменьшение (за счет диаметра ротора) момента инерции ротора Jр позволяют значительно снизить электромеханическую постоянную времени двигателя Тм ≈ JРк.

Преимущество исполнительных двигателей сквозной и обычной конструкции типа беличьей клетки ротора по отношению к двигателям с полым немагнитным ротором особенно ощутимо при очень малых мощностях — от сотых долей ватта до 3... 5 Вт и больших мощностях — свыше 200...300 Вт, когда в процентном отношении потери от намагничивающего тока у двигателей с полым ротором особенно велики.

К положительным свойствам двигателей сквозной конструкции следует отнести:

- более высокие cos cp и КПД;

- меньшие массу и габаритные размеры в определенных диапазонах номинальных мощностей.

Недостатками двигателей с обычным короткозамкнутым ротором являются:

- сравнительно большой момент инерции ротора, что ведет к увеличению электромеханической постоянной времени;

- сравнительно большой сигнал трогания, что обусловлено массой ротора, наличием действующих на ротор радиальных сил одностороннего магнитного притяжения к статору из-за ферромагнитных свойств ротора;

- наличие высших зубцовых гармоник поля.

Синхронные микродвигатели

Основной особенностью синхронных микродвигателей, определяющей области их применения, является постоянство частоты вращения при неизменной частоте f питающей сети. Частота вращения ротора двигателя в синхронном режиме (при Mсопр < Мmах) не зависит от колебаний напряжения питания и момента сопротивления. Она равна частоте вращения магнитного поля, т.е. синхронной частоте вращения:

Асинхронные двигатели с короткозамкнутым ротором - student2.ru

В настоящее время в схемах автоматики синхронные микродвигатели применяются очень широко. По конструктивному исполнению они весьма разнообразны, особенно однофазные микродвигатели малых мощностей (от долей ватт до нескольких ватт).

Двигатели с номинальной мощностью от десятков до сотен ватт имеют обычное классическое исполнение. Они состоят из неподвижной части — статора, в пазах которого размещается трехфазная или двухфазная обмотка переменного тока, и вращающейся части — ротора, который у большинства двигателей имеет явно выраженные полюсы.

В зависимости от конструкции ротора различают синхронные микродвигатели с электромагнитным возбуждением, постоянными магнитами, реактивные и гистерезисные. На рис. 11.2 представлены основные конструктивные схемы синхронных микродвигателей.

Асинхронные двигатели с короткозамкнутым ротором - student2.ru

Рисунок 11.2. Конструктивные схемы синхронных микродвигателей:

а- с электромагнитным возбуждением (2р=2); б- с постоянными магнитами (2р=2); в- реактивные (2р=4); г- гистерезисные

Кроме двигателей обычного исполнения в схемах автоматики иногда встречаются обращенные синхронные микродвигатели, обмотка переменного тока которых размещается в пазах ротора.

Микродвигатели с электромагнитным возбуждением (с обмоткой возбуждения постоянного тока на полюсах) вследствие сложности их конструкций и пуска, а также необходимости наличия источника постоянного тока для питания обмотки возбуждения в схемах автоматики применяются очень редко.

Синхронные микродвигатели выпускаются как на промышленную частоту 50 Гц, так и на повышенные частоты 400, 500, 1000 Гц. Кроме обычных двигателей в схемах автоматики широко применяются тихоходные двигатели с электромагнитной редукцией частоты вращения, работающие на зубцовых гармониках поля, и двигатели с катающимся или волновым роторами. Иногда для получения низких частот вращения используются обычные двигатели со встроенными редукторами.

Выпускаются несколько серий синхронных микродвигателей, которые широко применяются в приборах звуко- и видеозаписи, кино- и фотоаппаратуре, системах связи, всевозможных лентопротяжных устройствах и т. п.

К синхронным микродвигателям предъявляются как общие для всех электрических машин требования — высокие энергетические показатели (n и cosφ), малые габариты, масса и т.п., так и специфические для синхронных двигателей требования, которые зависят от схемы, в которой применяется двигатель. В одних схемах от двигателя требуется постоянство средней частоты вращения, в других — постоянство мгновенной частоты вращения в пределах одного оборота ротора и т. п.

Синхронные микродвигатели с постоянными магнитами и асинхронным пуском отличаются от других типов синхронных двигателей с постоянными магнитами наличием на роторе короткозамкнутой обмотки типа беличьей клетки, предназначенной, во-первых, для пуска двигателя, во-вторых, для стабилизации его частоты вращения — демпфирования качаний ротора при резких изменениях нагрузки.

Асинхронные двигатели с короткозамкнутым ротором - student2.ru

Рисунок 11.4. Синхронный двигатель с радиальным расположением постоянного магнита и пусковой короткозамкнутой обмоткой:

1-статор; 2- шихтованная часть ротора с короткозамкнутой обмоткой;

3- постоянный магнит

В последнее время наибольшее распространение получили синхронные двигатели двух конструктивных исполнений: с радиальным и аксиальным расположениями постоянного магнита и пусковой короткозамкнутой обмотки.

Статоры двигателей обоих конструктивных исполнений ничем не отличаются от статоров обычных синхронных и асинхронных машин. В пазах шихтованных статоров располагаются трехфазные или двухфазные обмотки переменнбго тока. Роторы двигателей сочетают в себе элементы синхронного двигателя — постоянные магниты и асинхронного двигателя — короткозамкнутую обмотку, выполненную в виде беличьей клетки, располагающуюся в пазах.

Двигатели с радиальным расположением постоянного магнита и пусковой обмотки имеют кольцевой пакет стали ротора, напрессованый на постоянный магнит-звездочку, в пазах которого располагается короткозамкнутая обмотка. В стали магнитопровода ротора имеются междуполюсные прорези, размеры которых выбираются из условия хорошего асинхронного пуска и оптимального использования энергии постоянного магнита в синхронном режиме, т. е. из условия уменьшения потока рассеяния магнита. Пакет стали ротора с короткозамкнутой обмоткой предохраняет магнит от размагничивания в режиме пуска (короткого замыкания).

С целью предохранения магнита от размагничивания, а также увеличения асинхронного момента, необходимого для пуска, междуполюсную прорезь желательно выбирать минимально возможной. Исследования показывают, что оптимальный размер прорези увеличивается с увеличением мощности двигателя. Иногда с целью улучшения пусковых свойств двигателя и увеличения механической прочности его ротора между полюсными наконечниками оставляют небольшие перемычки — мостики насыщения.

Синхронные двигатели с постоянными магнитами и асинхронным пуском в ряде случаев имеют существенные преимущества по сравнению с синхронными реактивными и гистерезисными двигателями:

- более высокие энергетические показатели — КПД и cos φ;

- большую удельную мощность Ps — мощность на единицу массы (особенно при мощностях в десятки и сотни ватт и большом числе пар полюсов);

- повышенную перегрузочную способность, стабильность частоты вращения;

- хорошую синфазность вращения, что часто требуется в групповых приводах.

В некоторых системах автоматики применяются синхронные микродвигатели с постоянными магнитами и гистерезисным пуском.

Наши рекомендации