Представление переключательной функции в виде полинома Жегалкина.

Теорема Жегалкина. Любая переключательная функ­ция может быть представлена в виде полинома (много­члена), т. е. записана в форме

f(x1, . . . , xn) = ао Å a1x1 Å a2x2 Å …Å anxn Å an+1x1 x2Å … Å aNx1…xn ,

(3.1)

где a0, a1x1, … aN— константы, равные нулю или единице;

Å —операция сложения по модулю два.

При записи конкретной переключательной функции в виде многочлена коэффициенты a0, a1x1, … aN выпа­дают, так как члены, при которых коэффициенты рав­ны нулю, можно опустить, а коэффициенты, равные еди­нице, не писать.

Для доказательства теоремы Жегалкина предположим, что задана произвольная переключатель­ная функция п аргументов f(x1, . . . , xn), равная еди­нице на некотором числе наборов с номерами m1, … mp.

Покажем, что переключательная функция f(x1, . . . , xn) равна сумме конституент единицы, ко­торые равны единице на тех же наборах, что и данная функция:

f(x1, . . . , xn) = Km1 Å Km2 Å . . . Å Kmp. (3.2)

Действительно, на каждом из наборов с номерами m1, … mp равна единице только одна конституента, стоящая в правой части выражения (3.2), а осталь­ные равны нулю. Следовательно, на этих наборах и только на них правая часть выражения (3.2) принимает значение, равное единице.

Для того чтобы перейти от выражения (3.2) к виду (3.1), достаточно представить конституенты едини­цы в виде произведений и, используя соотношение Представление переключательной функции в виде полинома Жегалкина. - student2.ru , заменить все переменные с отрицаниями (так как отрицания в выражение (3.1) не входят). Пусть на­пример, конституента единицы записана в виде

Представление переключательной функции в виде полинома Жегалкина. - student2.ru .

Тогда получим

Ki= (1 Å x1)x2(1Åx3)x4x5.

Раскрывая скобки и приводя подобные члены в соответствии со свойствами операции сложения по модулю два, получаем запись заданной функ­ции в форме (3.1), что и доказывает теорему.

Приведенное доказательство теоремы позволяет сформулировать правило представления любой пере­ключательной функции в виде многочлена.

Чтобы переключательную функцию, заданную таблицей истинности, представить в виде полинома Жегалкина, доста­точно записать функцию в виде суммы конституент еди­ницы, равных единице на тех же наборах, на которых равна единице заданная функция. Затем все аргументы, входящие в полученное выражение с отрицанием, заме­нить с помощью соотношения Представление переключательной функции в виде полинома Жегалкина. - student2.ru , раскрыть скобки и привести подобные члены с учетом тождества:

x, если п нечетно,

x Å x Å . . . Å x =

0, если п четно.

Пример 3.3. Представить в виде полинома Жегалкина функцию f58(x1,x2,x3) (см. табл. 1.1).

Функция f58(x1,x2,x3) равна единице на втором, третьем, четвертом и шестом наборах, и может быть записана в виде суммы соответствующих конституент единицы:

f58(x1,x2,x3) =K2Å K3Å K4Å K6 = Представление переключательной функции в виде полинома Жегалкина. - student2.ru .

Используя соотношение Представление переключательной функции в виде полинома Жегалкина. - student2.ru , получаем

f58(x1,x2,x3)=(1Å x1)x2(1Å x3)Å (1Å x1)x2x3Å x1(1Å x2)(1Å x3)Å x1x2(1Å x3).

Приводя подобные члены, окончательно находим

f58(x1,x2,x3)= x1Å x2Å x1x2Å x1x3.

Наши рекомендации