Расчет ненапряженных шпоночных соединений
Для упрощения расчета предполагается равномерная эпюра распределения нагрузок на боковую поверхность шпонки (хотя в действительности она неравномерна).
Шпонки рассчитываются на смятие и срез от действующего по диаметру вала окружного усилия
где h, b, l - высота, ширина и длина шпонки;
[s]см, [t] - допускаемые напряжения смятия и среза (по таблицам).
Длина шпонки выбирается по более опасному напряженному состоянию.
ШЛИЦЕВЫЕ СОЕДИНЕНИЯ
Шлицевые соединения можно рассматривать как многошпоночные, в которых шпонки как бы изготовлены заодно с валом. В последние годы, в связи с общим повышением напряжений в деталях машин, шлицевые соединения получили самое широкое распространение взамен шпонок. Этому способствует оснащение промышленности специальным оборудованием - шлицефрезерными и протяжными станками. В сравнении со шпоночными шлицевые соединения имеют большую нагрузочную способность, лучше центрируют соединение и меньше ослабляют вал.
По профилю различают следующие шлицевые соединения (рис. 28):
прямобочные (а) - число шлиц Z = 6, 8, 10, 12;
звольвентные (б)- число шлиц Z = 12, 16 и более;
треугольные (в) - число шлиц Z = 24, 36 и более.
Рис. 28
Эвольвентные шлицы создают меньшую концентрацию напряжений у основания шлица, поэтому в настоящее время получают преимущественное распространение. Треугольные шлицы мелкие, поэтому мало ослабляют вал, однако они способны передавать лишь относительно небольшую нагрузку.
Шлицевые соединения применяются с центрированием ступицы по валу (рис. 29):
а) по наружному диаметру;
б) по внутреннему диаметру;
в) по боковым граням.
Рис. 28 а
Соединение (в), во избежание термических короблений, требует чистовой протяжки ступицы после термообработки, поэтому твердость ступицы не может быть выше HRC=30. Соединение (б) требует шлифовки вала по посадочному диаметру на специальных станках, зато ступица может быть твердой, так как посадочный диаметр шлифуется на обычных внутришлифовальных станках. Соединение (в) допускает твердые шлицы на валу и на ступице, однако для обеспечения сборки, считаясь с возможных короблением шлицов при закалке, зазоры в соединении должны быть увеличенными.
Расчет шлицевых соединений
Как и шпонки, шлицы рассчитывается на смятие и срез:
sсм = £ [s]см
t = £ [t] Р =
где Rc - средний радиус шлицов;
Мk - крутящий момент на оси вала.
Глава III
ВВЕДЕНИЕ ВПЕРЕДАЧИ
Передачи служат для преобразования вращения с изменением по величине или знаку угловых скоростей вращающихся систем и соответственно крутящих моментов на осях валов. Они находят широкое применение, главным образом, в приводах от двигателя к рабочим органам машин.
Различают два основных вида передач:
1) передачи зацеплением:
а) зубчатые;
б) червячные;
в) цепные;
г) передача "винт-гайка";
2) передачи трением:
а) ременные;
б) фрикционные.
Классификация передач
Зубчатые передачи
Зубчатые передачи получили наибольшее распространение в машиностроении благодаря следующим достоинствам:
а) практически неограниченной передаваемой мощности,
б) малым габаритам и весу,
в) стабильному передаточному отношению,
г) высокому КПД, который составляет в среднем 0,97 - 0,98 .
Недостатком зубчатых передач является шум в работе на высоких скоростях, который однако может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев.
При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу. Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни. Последние, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко - обычно лишь для уникальных передач большой мощности. При малых угловых скоростях вращения применяются конические прямозубые шестерни, а при больших - шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее. Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 - 5.
Рис. 29
Червячные передачи
Это передачи со скрещивающимися осями. Отличаются полностью бесшумной работой и большим передаточным отношением в одной паре, которое в среднем составляет 16 - 25. Серьезным недостатком червячных передач, ограничивающим их применение при значительных мощностях, является низкий КПД, обусловленный большими потерями на трение в зацеплении. Как следствие низкого КПД - при работе передачи под нагрузкой, выделяется большое количество тепла, которое надо отводить во избежание перегрева. Средние значения КПД первичной передачи составляют 0,7 -0,8.
Цепные передачи
Применяются при передаче вращения между, параллельными удаленными друг от друга валами. В настоящее время получили распространение два типа приводных цепей:
а) цепи втулочно-роликовые (типа Галя),
б) цепи зубчатые из штампованных звеньев (типа Рейнольдса).
Зубчатые цепи, благодаря относительно меньшему шагу, работают более плавно и бесшумно.
Недостатком цепных передач является сравнительно быстрый износ шарниров, способствующий вытяжке цепи и нарушению ее зацепления со звездочкой, а также шумная работа на высоких скоростях вследствие особенностей кинематики цепной передачи.
Ременные передачи
Применяются также для передачи вращения между параллельными удаленными валами. Область распространения этих передач в настоящее время значительно сократилась, однако они еще находят широкое применение в качестве первичного привода от двигателя, а также привода к механизмам, обладающим большим моментом вращающихся масс, При трогании с места и в случае внезапных перегрузок ремни пробуксовывают, спасая механизмы от поломок.
Преимущественное распространение перед плоскими получили плановые ремни, обладающие большей тяговой способностью.
Фрикционные передачи
Фрикционные передачи по форме фрикционных катков могут быть: цилиндрическими, коническими, лобовыми - с внешним и внутренним контактом. Главное достоинство фрикционных передач заключается в возможности создания на их базе фрикционных вариаторов (бесступенчатых коробок передач), а также в бесшумной их работе при высоких скоростях.
Глава IV
ЗУБЧАТЫЕ ПЕРЕДАЧИ
Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.
Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.
Основные определения из теории зацепления шестерен
1. Начальными называются воображаемые окружности, которые при зацеплении шестерен катятся без скольжения одна по другой.
2. Делительными называются воображаемые окружности, по которым происходит номинальное деление зубьев. Для них справедливо уравнение:
dд = mZ
Примечание: Если шестерни не имеют коррекции, то начальные и делительные окружности совпадает.
3. Окружностями выступов и впадин называются окружности, ограничивающие вершины и впадины зубьев.
4. Основными называются окружности, по которым развертываются эвольвенты, очерчивающие профили зубьев
d0 = dд cosa
5. Шагом t называется расстояние по дуге делительной окружности между одно-именными профилями соседних зубьев.
6. Основным шагом t0 называется шаг по основной окружности.
7. Модулем называется отношение диаметра делительной окружности к числу зубьев или шага к p.
8. Ритчем р называется число зубьев, приходящееся на один дюйм делительной окружности
p =
9. Линией зацепления ЛЗ называется геометрическое место точек контакта зубьев в зацеплении. В эвольвентном зацеплении ЛЗ - прямая, нормальная к профилю зубьев в полюсе зацепления и касательная к основным окружностям.
10. Углом зацепления a называется угол между линией зацепления и перпенди-куляром к линии центров.
11. Углом наклона спирали зубьев косозубых шестерен b называется угол между осью зуба и образующей делительного цилиндра или конуса.
12. Коэффициентом перекрытия e называется отношение дуги зацепления к основ-ному шагу.
13. Коэффициентом коррекции x называется отношение величины профильного смещения к модулю.