Типы сварных швов и их расчет
Рис. 2
Стыковой шов
Расчет шва:
где s - нормальное напряжение в шве;
Р - нагрузка;
S - минимальная толщина детали;
l - периметр шва;
[s]¢ - допускаемое нормальное напряжение для металла шва.
Для увеличения периметра шов иногда выполняют косым тавровым или фигурным.
Швы внахлестку.
Рис. 3
а) лобовой;
б) фланговый;
в) прорезной;
г) пробочный;
Расчет швов:
Опасными принято считать касательные напряжения в сечении под углом 45° к основанию шва (рис.4), там, где они достигают максимального значения.
Касательное напряжение (рис.4):
Рис. 4
где [t]¢ - допускаемое касательное напряжение для металла шва; К - катет шва.
Как это видно ив рис.5 , эпюра распределения нагрузок по длине флангового шва неравномерна, поэтому фланговые швы не рекомендуется делать длинными. При большой длине их делают прерывистыми.
Рис.5. Эпюра распределения нагрузки во фланговом шве.
Угловые и тавровые швы
Рис. 6
Расчет тавровых швов:
Рассматриваются наиболее характерные случаи нагружения тавровых швов, которые могут встречаться также и в комбинациях.
Рис. 7
а) нагрузка моментом в плоскости шва
Если привариваемая деталь круглая (рис.7а) (шов круглый кольцевой), то расчет шва проводится на кручение в кольцевом сечении, расположенном под углом 45° к основанию шва.
Здесь: Jp - полярный момент инерции расчетного сечения;
R - расстояние до наиболее удаленного от центра волокна, сечения шва.
Если сечение шва не круглое (рис.76), то оно всё же условно рассчитывается по уравнение кручения для круглых стержней. В этом случае принято пренебрегать возникающим при такой расчетной схеме короблением сечения и нелинейный характером эпюр напряжений:
t = £ [t]¢
Здесь: Jp - условный полярный момент инерции сечения;
[t]¢ - допускаемое напряжение кручения для наплавленного металла шва.
Для указанного на рис. 7 6 примера:
Jp = Jy - Jz
Jz = 2 ; Jy = 2 .
б) внецентренно приложенная нагрузка или нагрузка моментом
Рис. 8
Нагрузка состоит из изгибающего момента M = M0 или M = Pl и перерезывающей силы Р (при нагрузке только моментом M0 перерезывающая сила отсутствует).
Шов рассчитывается на изгиб и срез, но не по нормальным, а по касательным напряжениям в наклонных сечениях под углом 45° к основанию шва. Полное касательное напряжение равно векторной сумме напряжений от момента tm и перерезывающей силы tр
tm = ; tр= .
В данном примере
tm = ; tр= .
Выбор допускаемых напряжений
Допускаемые напряжения для наплавленного металла сварных швов определяются по таблицам в зависимости от марки электрода, способа сварки (ручная или автоматическая) и характера нагрузки.
При циклических нагрузках, в связи с возможностью образования опасных термических трещин, рекомендуется вместо сварных, применять заклепочные швы.
Глава II
РАЗЪЕМНЫЕ СОЕДИНЕНИЯ
К разъемным относятся такие соединения, которые могут быть разобраны без повреж-дения деталей.
Резьбовые соединения
Все резьбы стандартизированы в мировом масштабе, то есть резьбы национальных стандартов соответствующих типов взаимозаменяемы.
Типы резьб и их применение
Рис. 9
1. По профилю резьбы разделяются на следующие типы:
а) остроугольная (треугольная). Основной тип крепежной резьбы. Метрическая резьба имеет угол a = 60°, дюймовая - a = 55°;
б) прямоугольная;
в) трапецеидальная;
г) упорная (пилообразная).
Резьбы типа (б), (в), (г) называются силовыми и применяются для тех винтовых соединений, в которых желательно иметь меньшие потери на трение (например, в домкратах, натяжных устройствах, подъемниках, винтовых прессах, ходовых винтах).
Прямоугольная резьба, вследствие технологических трудностей ее изготовления, применяется крайне редко и обычно заменяется резьбами типа (в) и (г). Резьба (г), как показано на рисунке, применяется только при одностороннем действии основных нагрузок; при обратном приложении нагрузки потери на трение возрастают. В некоторых случаях применяется также резьба круглого профиля (там, где имеется опасность повреждения острых кромок, например, в пожарном оборудовании, в цоколях электрических ламп).