Понятие множества и элемента множества

В конце XIX века возникла новая область математики — теория множеств, одним из создателей которой был немецкий математик Георг Кантор (1845 — 1918). Эта теория, несмотря на небольшой возраст, стала фундаментом всей математики.

Множество — одно из основных математических понятий, поэ­тому не имеет явного определения, а поясняется на примерах. Оно возникло как обобщение таких понятий, как класс, группа, сово­купность, набор, стая, стадо и др.

Можно говорить о множестве домов на улице, о множестве пальцев на руке у человека, множестве углов у квадрата, множестве натуральных чисел.

Элементы множества — объекты, из которых образовано мно­жество.

Различают множества конечные и бесконечные. Например, мно­жество страниц в книге - это конечное множество, а множество то­чек на прямой — бесконечное множество.

В русском языке слово «множество» обозначает большое число предметов. В математике рассматривают не только множества с большим числом элементов, но и одноэлементные множества, а также пустое множество, которое не содержит ни одного элемента.

На рисунке 26 можно увидеть примеры различных множеств.

Множества обозначают заглавными буквами латинского алфавита: А, В, С. Для некоторых числовых множеств приняты стандартные обозначения:

N - множество натуральных чисел;

Z — множество целых чисел;

Q — множество рациональных чисел;

/ - множество иррациональных чисел;

R - множество действительных чисел.

Ø — символ, обозначающий пустое множество.

Понятие множества и элемента множества - student2.ru

2.2. Способы задания множеств

Так как понятие множества не имеет явного определения, необходимо научиться узнавать, является ли данная совокупность множеством или нет. Считают, что множество определяется своими элементами.

Множество задано, если о любом объекте можно сказать, принад­лежит он этому множеству либо не принадлежит.

Способы задания множеств:

Понятие множества и элемента множества - student2.ru

• перечислить все его элементы (применяется для задания мно­жеств с небольшим количеством элементов, иногда для бес­конечных, если понятно, какие элементы не указываются):

Понятие множества и элемента множества - student2.ru

Названные способы задания множеств взаимосвязаны — если конечное множество задано с помощью характеристического свой­ства, то можно его элементы перечислить, и наоборот.

Задание 19.

Понятие множества и элемента множества - student2.ru

Отношения между множествами

Два множества могут пересекаться и не пересекаться.

Задание 20

Назовите множества, которые можно выделить на рисунке 30. По­кажите их элементы. Сколько элементов в каждом множестве?

Понятие множества и элемента множества - student2.ru

Понятие множества и элемента множества - student2.ru

Берлине). Множества, независимо от количества элементов в них, изображают при помощи кругов (рис. 31).

Итак, можно выделить разные отношения между множествами:

1) множества не пересекаются;

2) множества пересекаются:

— множества имеют общие элементы, но ни одно не является подмножеством другого;

— одно множество является подмножеством другого, но мно­жества неравны;

— множества равны.

Задание 22

1. Изобразите при помощи кругов Эйлера отношения между мно­жествами, выделенными вами на рисунке 30.

2. Установите, какой из чертежей на рисунке 32 отражает отноше­ний между следующими множествами:

а) множество натуральных чисел, множество целых чисел, множе­ство рациональных чисел;

б) объем понятия я четырех угольник», объем понятия «прямоуголь­ник», объем понятия «ромб»;

в) множество пальцев на правой руке, множество пальцев на левой ноге, множество пальцев у человека;

г) объем понятия «женское имя», объем понятия «мужское имя», объем понятия «кличка животного».

Понятие множества и элемента множества - student2.ru

Операции над множествами

Из элементов двух множеств можно образовывать новые мно­жества, которые являются результатом определенных операций над множествами.

Понятие множества и элемента множества - student2.ru

Задание 23

Начертите два треугольника так, чтобы их пересечением были:

— точка;

— отрезок;

— треугольник;

— четырехугольник;

— пятиугольник;

— шестиугольник.

Понятие множества и элемента множества - student2.ru

Задан

Задание 24

Понятие множества и элемента множества - student2.ru

Понятие множества и элемента множества - student2.ru

Понятие множества и элемента множества - student2.ru

Задание 26

1. Перечислите элементы дополнения множества летних месяцев до множестве месяцев года.

2. Назовите характеристическое свойство дополнения множества А до N — множества натуральных чисел, если:

А — множество четных натуральных чисел; А - множество чисел, кратных 5; А - множество чисел, больших 10.

Наши рекомендации