Тема 2.1. Основные положения, метод

Сечений, напряжения

Тема 2.1. Основные положения, метод - student2.ru

Тема 2.1. Основные положения, метод - student2.ru

Тема 2.1. Основные положения 175

Тема 2.1. Основные положения, метод - student2.ru

176 Лекция 20

ЛЕКЦИЯ 20

Тема 2.2. Растяжение и сжатие.

Внутренние силовые факторы, напряжения.

Построение эпюр

Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях.

Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения нормальных напряжений в попе­речном сечении бруса.

Уметь строить эпюры продольных сил и нормальных напряжений.

Растяжение и сжатие

Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор — продольная сила.

Продольные силы меняются по длине бруса. При расчетах по­сле определения величин продольных сил по сечениям строится гра­фик — эпюра продольных сил.

Условно назначают знак продольной силы.

Тема 2.1. Основные положения, метод - student2.ru

Если продольная сила направлена от сечения, то брус растянут. Растяжение считают положительной деформацией (рис. 20.1а).

Если продольная сила направлена к сечению, то брус сжат. Сжа­тие считают отрицательной деформацией (рис. 20.16).

Примеры построения эпюры продольных сил

Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а).

Делим брус на участки нагружения.

Участком нагружения считают часть бруса между внешними силами.

Тема 2.2. Растяжение и сжатие 177

Тема 2.1. Основные положения, метод - student2.ru На представленном рисунке 3 участка нагружения. Воспользуемся методом сечений и определим вну­тренние силовые факторы внутри каждого участка.

Расчет начинаем со свободного конца бруса, что­бы не определять величины реакций в опорах.

Участок 1: ∑Fz = 0; -3F + N1 = 0; N1 = 3F. Продольная сила положи­тельна, участок 1 растянут.

Участок 2: ∑Fz = 0; -3F + 2F + N2 = 0; N2 = F. Продольная сила по­ложительна, участок 2 растянут.

Участок 3: ∑Fz = 0; -3F + 2F + 5F - N3 = 0; N3 = 4F. Про­дольная сила отрицательна, участок 3 сжат. Полученное значение N3 равно реакции в заделке.

Под схемой бруса строим эпюру продольной силы (рис. 20.26).

Тема 2.1. Основные положения, метод - student2.ru Эпюрой продольной си­лы называется график рас­пределения продольной си­лы вдоль оси бруса.

Ось эпюры параллель­на продольной оси.

Нулевая линия прово­дится тонкой линией. Зна­чения сил откладывают от оси, положительные — вверх, отрицательные — вниз. В пределах одного участка значение силы не меняется, поэто­му эпюра очерчивается отрезками прямых линий, параллельными оси Oz.

Правило контроля: в месте приложения внешней силы на эпюре должен быть скачок на величину приложенной силы.




178 Лекция 20

На эпюре проставляются значения Nz. Величины продольных сил откладывают в заранее выбранном масштабе.

Эпюра по контуру обводится толстой линией и заштриховыва­ется поперек оси.

Изучая деформации при растяжении и сжатии, обнаруживаем, что выполняются гипотеза плоских сечений и принцип смягчения граничных условий.

Гипотеза плоских сечений заключается в том, что поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси.

Следовательно, продольные внутренние волокна удлиняются одинаково, а внутренние силы упругости распределены по сечению равномерно.

Принцип смягчения граничных условий гласит: в точках тела, удаленных от мест приложения нагрузки, модуль внутренних сил мало зависит от способа закрепления. Поэтому при решении задач не уточняют способ закрепления.

Наши рекомендации