Методы обработки результатов измерений.

Анализ результатов любого исследования становится более убедительным и наглядным, если он соответствующим образом об­работан. Разработка методов регистрации, описания и анализа ре­зультатов исследований составляет содержание специальной науки - математической статистики. Основной предпосылкой сущест­вующих методов обработки результатов является представление по­следних в качестве случайных величин, полученных как некоторая выборка из генеральной совокупности этих величин, под которой подразумевается все множество возможных значений этих величин.

Вычисление средних величин.

Одной из основных характеристик случайной величины являет­ся ее математическое ожидание:

Методы обработки результатов измерений. - student2.ru (10)

где pi - вероятность появления случайной величины у, в каждом п, измерении при их общем числе n.

При ограниченном числе измерений вместо вероятности ис­пользуется частота события и вместо м(у) определяется средняя арифметическая величины у:

Методы обработки результатов измерений. - student2.ru (11)

Для измерений, подчиняющихся закону нормального распреде­ления, иногда вместо средней арифметической величины исполь­зуют моду (наиболее часто встречающуюся величину) или медиану (среднюю в ранжированном ряду величин).

Конкретные величины уi будут отличаться от средней на раз­ность Методы обработки результатов измерений. - student2.ru .

Для анализа этих отклонений используются сле­дующие характеристики:

1) среднее арифметическое отклонение

Методы обработки результатов измерений. - student2.ru (12)

А для малого числа измерений

Методы обработки результатов измерений. - student2.ru (13)

2) среднее квадратическое отклонение

Методы обработки результатов измерений. - student2.ru (14)

При этом, Методы обработки результатов измерений. - student2.ru -дисперсия (математическое ожидание квадрата отклонения случайной величины от ее математического ожидания).

В дальнейшем мы будем обозначать дисперсию Методы обработки результатов измерений. - student2.ru и т. п., подчеркивая, какую конкретно величину мы анализируем;

3) срединное (вероятное отклонение) е - это такая величина, относительно которой вероятность отклонений в большую и мень­шую сторону одинакова и равна 0,5. Соотношения между этими отклонениями приблизительно равны:

6е ≈ 5е1 ≈4е2 (15)

Чаще других используется среднее квадратическое отклонение σу, определяющее характер разброса случайной величины, точ­ность ее определения. Для оценки достоверности полученных ре­зультатов А. К. Митропольский [1] рекомендует использовать по­казатель точности исследования:

Методы обработки результатов измерений. - student2.ru (16)

Чем точнее проведено исследование, тем меньше будет показа­тель рт для технических задач его желательно иметь менее 5 %.

Если известна (или задана) мера изменчивости Методы обработки результатов измерений. - student2.ru , то из формулы (16) можно получить необходимое для достоверности
число экспериментов (наблюдений) n.

При прогнозировании следует знать не только конкретную
среднюю в какой-либо точке ti но и ее изменение от времени или
изменения какого-то иного фактора, то есть знать эти средние в нескольких точках.

Если линии, соединяющие указанные точки,
представляют собой ломаную, то ее следует сгладить. В ряде случаев сглаживание может облегчить применение методов выделения существующих тенденций
изменения y(t).

Один из наиболее простых приемов сглаживания [1] заключается в расчете скользящих средних, позволяющих сделать
плавными периодические и случайные колебания исследуемой величины.

Если рассматривать динамический ряд, состоящий из p уров-
ней, то скользящая средняя будет представлять собой среднюю ве-
личину для т последовательных уровней этого ряда (т < п). Для
каждого i-го уровня ряда скользящая средняя может быть вычисле-
на по формуле:

Методы обработки результатов измерений. - student2.ru , (17)

где Методы обработки результатов измерений. - student2.ru

Желательно принимать m нечетным числом, тогда р = 1; 2; 3;...
Как видно, при вычислении скользящей средней теряются 1, 2, 3... Крайние точки ряда. Зато можно наглядно наблюдать существую­щую тенденцию изменения y(t) (рис. 1.7).

Методы обработки результатов измерений. - student2.ru

Считая, что простые скользящие средние являются весьма гру­бым статистическим приемом выявления тенденции, часто иска­жающим оценку исследуемого процесса, Е.М. Четыркин [3] ре­комендует применять взвешенные скользящие средние. Под весом в

В данном случае понимается расстояние от середины интервала сглаживания. Точкам, находящимся ближе к середине конкретного интервала, приписывается больший вес. Метод определения весов, рекомендованный им, позволяет получить следующие формулы для нечетных m:

Методы обработки результатов измерений. - student2.ru (18)

Методы обработки результатов измерений. - student2.ru (19)

Методы обработки результатов измерений. - student2.ru (20)

Если полученные расчетные значения Методы обработки результатов измерений. - student2.ru все еще обладают значительной колеблемостью, то рекомендуется повторить процесс усреднения, то есть произвести второе, а потом, может быть, и третье сглаживание.

На наш взгляд, целесообразнее использовать в качестве коэф­фициентов при у известные биномиальные коэффициенты из так называемого треугольника паскаля. Тогда при нечетных m полу­чатся следующие формулы:

Методы обработки результатов измерений. - student2.ru (21)

Методы обработки результатов измерений. - student2.ru (22)

Методы обработки результатов измерений. - student2.ru (23)

Сглаживания но этим формулам меньше искажают общую тен­денцию, а мелкие волны не меняют свой знак (вместо выпуклого участка на кривой не получается вогнутый) для наглядности пока­жем это на рис. 1.8.

Кстати, для приведенного на рис. 1.8 примера вычисления, произведенные по формуле (19) практически совпадают с вычис­лениями по формуле (17) при m-3. Также близки между собой вычисления, произведенные по формулам (21) и (22). В связи с этим не всегда нужно расширять интервал сглаживания m.

Методы обработки результатов измерений. - student2.ru

Методы обработки результатов измерений. - student2.ru

Более мягкое сглаживание по формуле (22), получается также и для ломаной с некоторой цик­личностью. Пример этого показан на рис. 1.9.

Следует отметить, что сам термин "взвешенная скользящая средняя" в приведенном выше варианте соответствует одинаково­му числу измерений в каждой точке ti. Более логично было бы учесть также число измерений для каждой i-й точки, особенно для технических задач. Для этого каждую величину Методы обработки результатов измерений. - student2.ru следует умножить на соответствующее число измерений Методы обработки результатов измерений. - student2.ru .

Результаты измерений Методы обработки результатов измерений. - student2.ru представляют собой случайные величины. Процесс обработки экспериментальных данных заключается в нахождении наивероятнейшего значения измеряемой величины (среднего арифметического Методы обработки результатов измерений. - student2.ru ), точности полученных результатов, средней квадратической и наибольшей возможной ошибки среднего арифметического.

Точность отдельного измерения определяется по формуле:

Методы обработки результатов измерений. - student2.ru

Точности среднего арифметического определяется по формуле:

Методы обработки результатов измерений. - student2.ru ,

т.е. точность среднего арифметического больше точности отдельных измерений и пропорциональна квадратному корню из числа измерений. Cредняя квадратическая ошибка Методы обработки результатов измерений. - student2.ru среднего арифметического определяется по формуле:

Методы обработки результатов измерений. - student2.ru ,

где Методы обработки результатов измерений. - student2.ru - средняя квадратическая ошибка отдельного измерения.

Вероятная и наибольшая возможная (при Р-0,997) ошибки среднего арифметического, соответственно, равны:

Методы обработки результатов измерений. - student2.ru и Методы обработки результатов измерений. - student2.ru

При записи среднего арифметического принято указывать его среднюю квадратическую ошибку.

Порядок выполнения работы.

1. Выберите вариант задания из таблицы случайных чисел.

2. Определите среднее арифметическое.

3. Найдите среднюю квадратическую ошибку отдельного измерения.

4. Определите наибольшую возможную ошибку Методы обработки результатов измерений. - student2.ru отдельного измерения и убедитесь, что среди результатов измерений нет таких, которые отличались бы от среднего арифметического более чем на Методы обработки результатов измерений. - student2.ru . Если бы таковые оказались, их следует отбросить и начать обработку сначала. Данные сведите в таблицу.

5. Определите среднюю квадратическую ошибку Методы обработки результатов измерений. - student2.ru среднего арифметического.

6. Определите характеристики Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru , h и H.

Таблица 1.2

Xi Методы обработки результатов измерений. - student2.ru h H Методы обработки результатов измерений. - student2.ru s0 r0 S2 m3 A3 m4 B4
                       

Контрольные вопросы.

1.Что называется случайной величиной?

2.Виды случайных величин?

3.Дискретная случайная величина? Функция распределения. Плотность распределения? Биномиальное распределение?

4.Распределение Пуассона? Нормальное распределение?

5.Вычисление средних величин?

ЛАБОРАТОРНАЯ РАБОТА №2

ПЛАНИРОВАНИЕ МНОГОФАКТОРНОГО ЭКСПЕРИМЕНТА

Цель работы.

Построение математической модели изучаемого объекта с использованием планирования эксперимента.

Основные положения.

Большое количество экспериментальных задач в химии и химической технологии формулируется как задачи экстремальные: определение оптимальных условий процесса, оптимального состава композиции и т.д. Планирование эксперимента резко повышает точность и уменьшает объем экспериментальных исследований. Поэтому использование метода планирования эксперимента является наиболее эффективным методом получения математических моделей многофакторного процесса. При его реализации можно оценить роль факторов, на которые можно воздействовать (температура, концентрации, давления и др.) при исследовании и оптимизации изучаемого объекта или технологического процесса, получить количественные оценки основных эффектов взаимодействия. Выбор плана определяется постановкой задачи исследования и особенностями объекта. Процесс исследования обычно разбивается на отдельные этапы. Информация, полученная после каждого этапа, определяет дальнейшую стратегию эксперимента. Таким образом, возникает возможность оптимального управления экспериментом. Применение методов планирования значительно повышает эффективность эксперимента [1].

Рассмотрим основные определения, сущность и задачи планирования эксперимента; порядок построения модели исследуемого процесса при помощи полного факторного эксперимента, особенности построения моделей с учетом нелинейностей типа квадрата факторов, а также расчетные формулы для обработки и оценки экспериментальных данных.

Переменные x1, x2, …, xk принято называть факторами. Факторами могут быть какие-либо внешние для объекта исследования воздействия (влажность, температура окружающей среды), или же параметры самого объекта (концентрация, температура, давление, удельная теплоемкость рабочей смеси). Выходные параметры также могут быть разнородными. В зависимости от решаемой задачи выходная величина называется откликом, функцией цели, функцией отклика, параметром оптимизации. Обычно аналитическая связь между входом и выходом (модель объекта) неизвестна, а известны факторы xi и подлежащие исследованию выходные величины yi.

Область определения двух факторов x1, x2 называется двухфакторным пространством, а эксперимент – двухфакторным экспериментом.

Каждый фактор может принимать определенное количество значений. Эти значения называются уровнями факторов. Например, если факторы могут принимать два значения -1, +1, то число уровней равно 2.

Число опытов в одном эксперименте равно числу различных наборов факторов. Для полного факторного эксперимента необходимое количество опытов N определяется по формуле:

Методы обработки результатов измерений. - student2.ru ,

где n – количество уровней; k – число факторов.

При проведении двухфакторного эксперимента на двух уровнях результат эксперимента представляет собой квадрат и число опытов равно:

Методы обработки результатов измерений. - student2.ru .

При проведении трехфакторного эксперимента на двух уровнях результат эксперимента представляет собой куб или параллелепипед, число вершин которого равно числу опытов:

Методы обработки результатов измерений. - student2.ru .

Выбор факторов.

Приступая к планированию эксперимента, необходимо выбрать факторы и определить: влияние их на выходную величину y, какие из них могут задаваться по желанию экспериментатора, какие неуправляемы или случайны, являются ли факторы зависимыми или независимыми величинами [2].

Для каждого эксперимента необходимо выбрать интервал варьирования факторов h. Данным фактором называется половина разности между верхним и нижним значением:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru .

Интервал варьирования физического фактора должен быть таким, чтобы его величина примерно на порядок превосходила погрешность установки и измерения величины xi; аппроксимирующая функция незначительно отличалась от искомой зависимости – требование адекватности модели; при переходе от одного опыта к другому изменение отклика было достаточно ощутимым, т.е. в несколько раз превосходило погрешность отклика.

Значение фактора в центре области эксперимента называется его основным уровнем или центром плана, обозначается Методы обработки результатов измерений. - student2.ru и может быть найдено следующим образом:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru .

Для удобства записи плана эксперимента и обработки экспериментальных данных обычно пользуются условными значениями факторов, которые обозначаются Методы обработки результатов измерений. - student2.ru и вычисляются по формуле:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru .

Данная процедура равносильна переносу начала координат в точку основного уровня факторов и изменению масштаба. Все условные факторы – безразмерные и нормированные величины.

Модель процесса.

Выбор модели (уравнения модели) в методе планирования эксперимента – неформализованный этап, который основывается обычно на интуитивных соображениях с учетом предыдущего опыта экспериментатора, а количественное определение коэффициентов выбранных уравнений модели – на результатах эксперимента. Поэтому правильный выбор модели должен подтверждаться экспериментально.

Модель определяется переменными xi и постоянными параметрами βi и в общем случае имеет вид:

Методы обработки результатов измерений. - student2.ru .

Модели могут быть линейные относительно xi:

Методы обработки результатов измерений. - student2.ru ,

Также они могут быть нелинейного вида:

Методы обработки результатов измерений. - student2.ru

Методы обработки результатов измерений. - student2.ru

Построение планов полного факторного эксперимента.

Полным факторным называется такой эксперимент, в котором реализуются все возможные комбинации (наборы) уровней факторов [3]. Если k факторов варьируются на двух уровнях, то число всех возможных наборов – N=2k. Если k факторов варьируются на трех уровнях, то N=3k. С увеличением числа факторов k, быстро растет число опытов.

Используя полученные данные можно представить план эксперимента в виде таблицы матрицы. Для двухфакторного эксперимента:

Номер опыта Уровни переменных Отклики
x1 x2 yu1 yu2 yuj
-1 -1 y11 y12 y1j
+1 -1 y21 y22 y2j
-1 +1 y31 y32 y3j
+1 +1 y41 y42 y4j

Для трехфакторного эксперимента:

Номер опыта Уровни переменных Отклики
x1 x2 x3 yu1 yu2 yuj
-1 -1 -1 y11 y12 y1j
+1 -1 -1 y21 y22 y2j
-1 +1 -1 y31 y32 y3j
+1 +1 -1 y41 y42 y4j
-1 -1 +1 y51 y52 y5j
+1 -1 +1 y61 y62 y6j
-1 +1 +1 y71 y72 y7j
+1 +1 +1 y81 y82 y8j

В каждой точке может проводиться несколько опытов nu, которые называются параллельными. Для проведения эксперимента значения факторов разделяются на уровни, задаваемые соответствующими строками.

Основные достоинства планов ПФЭ – простота определения коэффициентов уравнения регрессии, возможность учета произведений взаимодействия факторов без изменения плана основного эксперимента. Преимущества любой матрицы ПФЭ достигаются за счет особого построения плана эксперимента, при котором матрица обладает свойствами ортогональности, нормировки, симметрии и ротатабельности [3].

Свойство ортогональности: сумма построчных произведений элементов любых двух граф равно нулю.

Методы обработки результатов измерений. - student2.ru

где i, j – номер столбца или номер фактора; i=1,2,…, k (k – общее количество факторов); u – номер набора факторов или номер строки; N – общее число различных наборов или число строк матрицы ПФЭ.

Свойство нормировки: сумма квадратов элементов любой графы равна числу различных опытов – строк N.

Методы обработки результатов измерений. - student2.ru

Свойство симметрии: алгебраическая сумма элементов любого реального фактора равна нулю (условие баланса положительных и отрицательных значений каждой переменной).

Методы обработки результатов измерений. - student2.ru

Свойство ротатабельности: дисперсии предсказанных значений отклика на равных расстояниях от центра плана постоянны и минимальны.

В полном факторном эксперименте возможен учет нелинейностей типа произведения факторов (уравнение регрессии отличается от линейного наличием слагаемого xixj) и учет нелинейностей типа квадратов факторов.

План, учитывающий нелинейности типа квадратов факторов, называется ортогональным центрально-композиционным планом (ОЦКП) второго порядка. Они позволяют сформировать функцию отклика в виде полного квадратичного полинома, который содержит большее число членов, чем неполный квадратичный полином, сформированный по планам первого порядка, и поэтому требуют большего числа выполняемых опытов.

В общем случае для k факторов полином второй степени имеет вид:

Методы обработки результатов измерений. - student2.ru

Полный квадратичный полином при k=2 содержит 6 членов и имеет вид:

Методы обработки результатов измерений. - student2.ru

при k=3 – 11 членов:

Методы обработки результатов измерений. - student2.ru Для получения квадратичной зависимости каждый фактор должен фиксироваться как минимум на трех уровнях.

Планы ПФЭ не позволяют найти коэффициенты βii при квадратах факторов, так как все графы Методы обработки результатов измерений. - student2.ru тождественны графе x0 (xi=±1, Методы обработки результатов измерений. - student2.ru =1). Кроме того, для этих граф нарушаются условия ортогональности и симметричности. В основе построения планов второго порядка, как и планов первого порядка, лежат принципы ортогональности граф и их симметрия. Условие нормировки может не выполняться.

Для выполнения этих принципов к центру плана второго порядка, ядру – 2k добавляются дополнительные точки факторного пространства. Точки называются звездными. Положение звездных точек определяется из условия ортогональности всех граф матрицы планирования второго порядка. Кроме значений факторов на уровнях ±1, в плане добавляется точка начала координат xi=0 (i=1, 2,…,k), и на каждой координате выбираются две звездные точки xi=α.

Общее число опытов определяется соотношением:

Методы обработки результатов измерений. - student2.ru

k – количество факторов.

На рисунке 2.1 показано проведение опыта в двухфакторном пространстве для плана ОЦКП. Звездные точки отмечены кружками. Величина α называется плечом звездных точекили звездным плечом. Положение звездных точек зависит от числа варьируемых факторов.

Методы обработки результатов измерений. - student2.ru

Рисунок 2.1 – расположение звездных точек.

Наличие звездных точек обеспечивает ортогональность граф первых степеней факторов. В ОЦКП каждый фактор фиксируется, в общем случае на пяти уровнях – -α, -1, 0, 1, α.

Для обеспечения ортогональности всех граф матрицы ОЦКП необходимо преобразовать квадраты факторов по формуле:

Методы обработки результатов измерений. - student2.ru

Значение поправки a определяется следующим образом. Сумма элементов столбца, соответствующего квадратам факторов, должна быть равна нулю:

Методы обработки результатов измерений. - student2.ru

Откуда

Методы обработки результатов измерений. - student2.ru (2.1)

В общем случае ортогональный центрально-композиционный план при трех факторах имеет вид, представленный в таблице 2.1.

Таблица 2.1

  Но-мер опы-та x0 x1 x2 x3 x1∙x2 x1∙x3 x2∙x3 x1∙x2∙x3 Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru y
Точки плана ПФЭ 23 (N0=2k точек) +1 -1 -1 -1 +1 +1 +1 -1 1-a 1-a 1-a y1
+1 +1 -1 -1 -1 -1 +1 +1 1-a 1-a 1-a y2
+1 -1 +1 -1 -1 +1 -1 +1 1-a 1-a 1-a y3
+1 +1 +1 -1 +1 -1 -1 -1 1-a 1-a 1-a y4
+1 -1 -1 +1 +1 -1 -1 +1 1-a 1-a 1-a y5
+1 +1 -1 +1 -1 +1 -1 -1 1-a 1-a 1-a y6
+1 -1 +1 +1 -1 -1 +1 -1 1-a 1-a 1-a y7
+1 +1 +1 +1 +1 +1 +1 +1 1-a 1-a 1-a y8
Звездные точки (2k точек) +1 α2-a -a -a y9
+1 + α α2-a -a -a y10
+1 - α -a α2-a -a y11
+1 + α -a α2-a -a y12
+1 - α -a -a α2-a y13
+1 + α -a -a α2-a y14
Нулевая точка +1 -a -a -a y15
Методы обработки результатов измерений. - student2.ru - N -
Методы обработки результатов измерений. - student2.ru - N Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru  

Для определения неизвестных a и α нужно сформировать и решить систему из двух уравнений. Одно из них для a было записано раннее – это уравнение (2.1). Другое уравнение получим из условия ортогональности для столбцов x4 и x5:

Методы обработки результатов измерений. - student2.ru .

После простейших преобразований с учетом того, что Методы обработки результатов измерений. - student2.ru - общее число опытов в плане, получаем:

Методы обработки результатов измерений. - student2.ru .

Соотношение для a при j=1, 2 или 3 может быть записано как (см. таблицу 2.1):

Методы обработки результатов измерений. - student2.ru .

Подставив его в предыдущее уравнение, получаем:

Методы обработки результатов измерений. - student2.ru

Откуда

Методы обработки результатов измерений. - student2.ru .

Тогда

Методы обработки результатов измерений. - student2.ru .

И плечо звездных точек

Методы обработки результатов измерений. - student2.ru

Например, для ОЦКП при числе факторов k=3 параметры плана следующие:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru

Обобщим результаты в таблицу 2.2.

Таблица 2.2

Число факторов k Ядро (центр) плана Общее число опытов N Звездное плечо α Значение поправки a
22 1.0000 2/3=0.6667
23 1.2154 8/15=0.7303
24 1.4142 4/5=0.80
25-1 1.5467 Методы обработки результатов измерений. - student2.ru =0.7698
25 1.5960 Методы обработки результатов измерений. - student2.ru =0.8627

Располагая данными таблицы 2.2, можно построить ортогональные центрально-композиционные планы второго порядка.

По результатам опытов формируется полином.

при k=2:

Методы обработки результатов измерений. - student2.ru

при k=3:

Методы обработки результатов измерений. - student2.ru

Коэффициенты полинома определяются по формуле:

Методы обработки результатов измерений. - student2.ru

Полиномы можно представить в виде:

Методы обработки результатов измерений. - student2.ru - при k=2;

и при k=3:

Методы обработки результатов измерений. - student2.ru

Где коэффициент Методы обработки результатов измерений. - student2.ru определяется следующим образом при k=2:

Методы обработки результатов измерений. - student2.ru

при k=3:

Методы обработки результатов измерений. - student2.ru

Ортогональные центрально композиционные планы при Методы обработки результатов измерений. - student2.ru не обеспечивают постоянства дисперсии отклика в различных точках факторного пространства.

Порядок выполнения работы.

1. Выберете вариант задания из приложения 3. В соответствии с заданием выполните следующие пункты.

2. Оцениваем граничные значения факторов, центр плана, шаг варьирования.

Шаг варьирования:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru ,

где Методы обработки результатов измерений. - student2.ru - верхнее граничное значение фактора; Методы обработки результатов измерений. - student2.ru - нижнее граничное значение фактора.

Значение фактора в центре области эксперимента называется его основным уровнем или центром плана, обозначается Методы обработки результатов измерений. - student2.ru и может быть найдено следующим образом:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru

Граничные значения:

Методы обработки результатов измерений. - student2.ru

3. Переводим все значения факторов в условные единицы по формуле:

Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru ,

где Методы обработки результатов измерений. - student2.ru - значения фактора в натуральном масштабе, Методы обработки результатов измерений. - student2.ru - значение фактора в условном масштабе.

Для граничных условий и центра плана:

Методы обработки результатов измерений. - student2.ru

Результаты пересчета значений факторов из натуральных величин в условные сведем в таблицу 2.3:

Таблица 2.3

Фактор Основной уровень (в натуральных единицах) Шаг варьирования (в натуральных единицах) Значения уровней переменных соответствующие условным единицам
-1 +1
1.            
2.            
3.            

Построим ортогональный центрально-композиционный план (ОЦКП) второго порядка, который учитывает нелинейности типа квадрата факторов.

Схема планирования 2-факторного эксперимента

Полный квадратичный полином при k=2 содержит 6 членов и имеет вид:

Методы обработки результатов измерений. - student2.ru

Общее число опытов вычисляется по формуле:

Методы обработки результатов измерений. - student2.ru

Звездное плечо:

Методы обработки результатов измерений. - student2.ru

Значение поправки a:

Методы обработки результатов измерений. - student2.ru

Все данные берем из таблицы, расположенной в пункте «Основные положения» в соответствии со значением k.

Значит, квадраты факторов преобразуются по формуле:

Методы обработки результатов измерений. - student2.ru

Значение коэффициентов уравнения вычисляются следующим образом:

Методы обработки результатов измерений. - student2.ru

где yu – экспериментальное значение соответствующего опыта.

Коэффициент Методы обработки результатов измерений. - student2.ru :

Методы обработки результатов измерений. - student2.ru

Заполняем таблицу 2.4.

4.1. Считаем столбцы 5-14. Столбец 8 – экспериментальные данные, их заполняем из таблицы приложения в соответствии с вариантом.

4.2. Вычисляем коэффициенты bi по соответствующей формуле, приведенной выше. Коэффициент b1, к примеру, считается так:

Методы обработки результатов измерений. - student2.ru

4.3. Составляем уравнение регрессии.

4.4. В полученное уравнение регрессии подставляем значения факторов в условных единицах. Таким образом, заполняем столбец 15.

4.5. Определяем отклонение расчетного значения Методы обработки результатов измерений. - student2.ru от экспериментального y – заполняем столбец 16.

В конце расчета каждого столбца не забываем определять сумму столбца, если стоит знак Методы обработки результатов измерений. - student2.ru , или сумму квадратов элементов столбца если стоит Методы обработки результатов измерений. - student2.ru .

Таблица 2.4

Но- мер опы- та x0 x1 x2 x1·x2 Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru y x0·y x1·y x2·y x1·x2·y x3·y x4·y Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru
+1 -1 -1                        
+1 +1 -1                        
+1 -1 +1                        
+1 +1 +1                        
+1 -1                        
+1 +1                        
+1 -1                        
+1 +1                        
+1                        
    Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru - Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru Методы обработки результатов измерений. - student2.ru   Методы обработки результатов измерений. - student2.ru   Методы обработки результатов измерений. - student2.ru   Методы обработки результатов измерений. - student2.ru - -
        -             - -

Наши рекомендации